9.9
CiteScore
7.1
Impact Factor
Turn off MathJax
Article Contents

Key divisions and cell specification during embryo pattern formation require SMU1-mediated splicing of CAK genes in Arabidopsis

doi: 10.1016/j.jgg.2025.10.008
Funds:

We thank Liping Niu, Qin Lu, and Xinlian Liu from the Core Facility of State Key Laboratory of Hybrid Rice and Wenxuan Zou from the Core Facility of College of Life Sciences at Wuhan University for their technical support

Professor Yangjie Hu and Xiongbo Peng (Wuhan University) for critical reading and comments, and all the members of the Yang research group for discussions. This work was supported by the National Natural Science Foundation of China (32570654 and 32370619), the earmarked fund for China Agriculture Research System (CARS) (CARS-01-02), the Natural Science Foundation of Hubei Province (2024AFA010 and 2024AFE007), and Hubei Hongshan Laboratory.

  • Received Date: 2025-08-29
  • Accepted Date: 2025-10-26
  • Rev Recd Date: 2025-10-18
  • Available Online: 2025-11-14
  • Embryonic pattern formation and cell specification require precise cell division and cell cycle regulation. Splicing factors and the splicing of precursor mRNA (pre-mRNA) play significant roles in embryo development. However, how splicing factors control embryonic patterning via RNA splicing remains unclear. Here, we show that the mutation of SUPPRESSORS OF MEC-8 AND UNC-52 1 (SMU1), a conserved subunit of the spliceosomal B complex, causes compromised cell fate of the hypophysis and quiescent center (QC), failed embryonic root apical meristem (RAM) formation, as evidenced by altered WUSCHEL-RELATED HOMEOBOX 5 (WOX5) expression and perturbed auxin signaling. This results in smu1 embryo lethality. The splicing efficiency of three out of four CYCLIN-DEPENDENT KINASE ACTIVATOR (CAK) genes is decreased, leading to reduced protein levels in smu1 embryos. These CAK genes are required for hypophysis specification and embryonic RAM formation. SMU1 binds CAK transcripts in vitro and in vivo. Restoring the expression of either CAK gene partially rescues the defects in smu1 embryos, leading to the formation of QC-like cells, continued embryo development, and even the production of viable seeds. Our data suggest that SMU1 binds to CAK transcripts and promotes their splicing, enabling cell cycle progression to promote embryonic RAM formation.
  • loading
  • Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume, L., Noh, Y.S., Amasino, R., Scheres, B., 2004. The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119, 109-120.
    Banerjee, G., Singh, D., Sinha, A.K., 2020. Plant cell cycle regulators: Mitogen-activated protein kinase, a new regulating switch? Plant Sci. 301, 110660.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K., Scheres, B., 2005. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39-44.
    Cai, X., Zhang, H., Mu, C., Chen, Y., He, C., Liu, M., Laux, T., Pi, L., 2024. A mobile miR160-triggered transcriptional axis controls root stem cell niche maintenance and regeneration in Arabidopsis. Dev. Cell 60, 459-471.
    Capron, A., Chatfield, S., Provart, N., Berleth, T., 2009. Embryogenesis: pattern formation from a single cell. Arabidopsis Book 7, e0126.
    Chandler, J.W., Werr, W., 2015. Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci. 20, 291-300.
    Chapman, E.J., Estelle, M., 2009. Mechanism of auxin-regulated gene expression in plants. Annu. Rev. Gen. 43, 265-285.
    Chung, T., Wang, D., Kim, C.S., Yadegari, R., Larkins, B.A., 2009. Plant SMU-1 and SMU-2 homologues regulate pre-mRNA splicing and multiple aspects of development. Plant Physiol. 151, 1498-1512.
    Crawford, B.C., Sewell, J., Golembeski, G., Roshan, C., Long, J.A., Yanofsky, M.F., 2015. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655-659.
    Cruz-Ramirez, A., Diaz-Trivino, S., Blilou, I., Grieneisen, Veronica A., Sozzani, R., Zamioudis, C., Miskolczi, P., Nieuwland, J., Benjamins, R., Dhonukshe, P., Caballero-Perez, J., Horvath, B., Long, Y., Mahonen, Ari P., Zhang, H., Xu, J., Murray, James A.H., Benfey, Philip N., Bako, L., Maree, Athanasius F.M., Scheres, B., 2012. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. Cell 150, 1002-1015.
    Cruz-Ramirez, A., Diaz-Trivino, S., Wachsman, G., Du, Y., Arteaga-Vazquez, M., Zhang, H., Benjamins, R., Blilou, I., Neef, A.B., Chandler, V., Scheres, B., 2013. A SCARECROW-RETINOBLASTOMA protein network controls protective quiescence in the Arabidopsis root stem cell organizer. PLoS Biol. 11, e1001724.
    Dante, R.A., Larkins, B.A., Sabelli, P.A., 2014. Cell cycle control and seed development. Front. Plant Sci. 5, 493.
    Desvoyes, B., Arana-Echarri, A., Barea, M.D., Gutierrez, C., 2020. A comprehensive fluorescent sensor for spatiotemporal cell cycle analysis in Arabidopsis. Nat. Plants 6, 1330-1334.
    Ding, Z., Friml, J., 2010. Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc. Natl. Acad. Sci. U. S. A. 107, 12046-12051.
    Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
    Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., Scheres, B., 1993. Cellular organisation of the Arabidopsis thaliana root. Development 119, 71-84.
    Dresselhaus, T., Jurgens, G., 2021. Comparative embryogenesis in angiosperms: activation and patterning of embryonic cell lineages. Annu. Rev. Plant Biol. 72, 641-676.
    Du, Y., Roldan, M.V.G., Haraghi, A., Haili, N., Izhaq, F., Verdenaud, M., Boualem, A., Bendahmane, A., 2022. Spatially expressed WIP genes control Arabidopsis embryonic root development. Nat. Plants 8, 635-645.
    Feng, Z., Nagao, H., Li, B., Sotta, N., Shikanai, Y., Yamaguchi, K., Shigenobu, S., Kamiya, T., Fujiwara, T., 2020. An SMU splicing factor complex within nuclear speckles contributes to magnesium homeostasis in Arabidopsis. Plant Physiol. 184, 428-442.
    Forzani, C., Aichinger, E., Sornay, E., Willemsen, V., Laux, T., Dewitte, W., Murray, James A.H., 2014. WOX5 Suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche. Curr. Biol. 24, 1939-1944.
    Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., Jurgens, G., 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426, 147-153.
    Galinha, C., Hofhuis, H., Luijten, M., Willemsen, V., Blilou, I., Heidstra, R., Scheres, B., 2007. PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449, 1053-1057.
    Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., Laux, T., 2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131, 657-668.
    Hajheidari, M., Farrona, S., Huettel, B., Koncz, Z., Koncz, C., 2012. CDKF;1 and CDKD protein kinases regulate phosphorylation of serine residues in the C-terminal domain of Arabidopsis RNA polymerase II. Plant Cell 24, 1626-1642.
    Hamann, T., Benkova, E., Baurle, I., Kientz, M., Jurgens, G., 2002. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev. 16, 1610-1615.
    Hardtke, C.S., Berleth, T., 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J. 17, 1405-1411.
    Helliwell, C.A., Waterhouse, P.M., 2005. Constructs and methods for hairpin RNA-mediated gene silencing in plants. Methods Enzymol. 392, 24-35.
    Huang, X., Zhao, P., Peng, X., Sun, M.-X., 2023. Seed development in Arabidopsis: what we have learnt in the past 30 years. Seed Biology 2, 0-0.
    Jenik, P.D., Gillmor, C.S., Lukowitz, W., 2007. Embryonic patterning in Arabidopsis thaliana. Annu. Rev. Cell Dev. Biol. 23, 207-236.
    Kanno, T., Lin, W.D., Fu, J.L., Matzke, A.J.M., Matzke, M., 2017. A genetic screen implicates a CWC16/Yju2/CCDC130 protein and SMU1 in alternative splicing in Arabidopsis thaliana. RNA 23, 1068-1079.
    Keiper, S., Papasaikas, P., Will, C.L., Valcarcel, J., Girard, C., Luhrmann, R., 2019. Smu1 and RED are required for activation of spliceosomal B complexes assembled on short introns. Nat. Commun. 10, 3639.
    Kong, X., Lu, S., Tian, H., Ding, Z., 2015. WOX5 is shining in the root stem cell niche. Trends Plant Sci. 20, 601-603.
    Laux, T., Wurschum, T., Breuninger, H., 2004. Genetic regulation of embryonic pattern formation. Plant Cell 16, S190-202.
    Li, B., Dewey, C.N., 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323.
    Liu, C., Xu, Z., Chua, N.-h., 1993. Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell 5, 621-630.
    Liu, M., Yuan, L., Liu, N.Y., Shi, D.Q., Liu, J., Yang, W.C., 2009. GAMETOPHYTIC FACTOR 1, involved in pre-mRNA splicing, is essential for megagametogenesis and embryogenesis in Arabidopsis. J. Integr. Plant Biol. 51, 261-271.
    Liu, Y., Cai, Y., Li, Y., Zhang, X., Shi, N., Zhao, J., Yang, H., 2022. Dynamic changes in the transcriptome landscape of Arabidopsis thaliana in response to cold stress. Front. Plant Sci. 13, 983460.
    Long, X., Cai, Y., Wang, H., Liu, Y., Huang, X., Xuan, H., Li, W., Zhang, X., Zhang, H., Fang, X., He, H., Xu, G., Dean, C., Yang, H., 2024. Cotranscriptional splicing is required in the cold to produce COOLAIR isoforms that repress Arabidopsis FLC. Proc. Natl. Acad. Sci. U. S. A. 121, e2407628121.
    Lotan, T., Ohto, M., Yee, K.M., West, M.A., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., Harada, J.J., 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195-1205.
    Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., Wang, B., Yang, Z., Li, H., Lin, Y., Xie, Y., Shen, R., Chen, S., Wang, Z., Chen, Y., Guo, J., Chen, L., Zhao, X., Dong, Z., Liu, Y.G., 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol. Plant 8, 1274-1284.
    Mansfield, S.G., Briarty, L.G., 1991. Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Botany 69, 461-476.
    Meinke, D.W., 2020. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. New Phytol. 226, 306-325.
    Michniewicz, M., Brewer, P.B., Friml, J.I., 2007. Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5, e0108.
    Moller, B., Weijers, D., 2009. Auxin control of embryo patterning. Cold Spring Harbor Perspect. Biol. 1, a001545.
    Nodine, M.D., Yadegari, R., Tax, F.E., 2007. RPK1 and TOAD2 are two receptor-like kinases redundantly required for Arabidopsis embryonic pattern formation. Dev. Cell 12, 943-956.
    Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L., 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290-295.
    Petrasek, J., Mravec, J., Bouchard, R., Blakeslee, J.J., Abas, M., Seifertova, D., Wisniewska, J., Tadele, Z., Kubes, M., Covanova, M., Dhonukshe, P., Skupa, P., Benkova, E., Perry, L., Krecek, P., Lee, O.R., Fink, G.R., Geisler, M., Murphy, A.S., Luschnig, C., Zazimalova, E., Friml, J., 2006. PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312, 914-918.
    Pi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C.I., Weijers, D., Hennig, L., Groot, E., Laux, T., 2015. Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev. Cell 33, 576-588.
    Polyn, S., Willems, A., De Veylder, L., 2015. Cell cycle entry, maintenance, and exit during plant development. Curr. Opin. Plant Biol. 23, 1-7.
    Rademacher, E.H., Lokerse, A.S., Schlereth, A., Llavata-Peris, C.I., Bayer, M., Kientz, M., Freire Rios, A., Borst, J.W., Lukowitz, W., Jurgens, G., Weijers, D., 2012. Different auxin response machineries control distinct cell fates in the early plant embryo. Dev. Cell 22, 211-222.
    Reiner, A., Yekutieli, D., Benjamini, Y., 2003. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368-375.
    Robert, H.S., Grones, P., Stepanova, A.N., Robles, L.M., Lokerse, A.S., Alonso, J.M., Weijers, D., Friml, J., 2013. Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506-2512.
    Robinson, J.T., Thorvaldsdottir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative genomics viewer. Nat. Biotechnol. 29, 24-26.
    Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., Laux, T., 2007. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446, 811-814.
    Sasaki, T., Kanno, T., Liang, S.C., Chen, P.Y., Liao, W.W., Lin, W.D., Matzke, A.J., Matzke, M., 2015. An Rtf2 domain-containing protein influences pre-mRNA splicing and is essential for embryonic development in Arabidopsis thaliana. Genetics 200, 523-535.
    Schlereth, A., Moller, B., Liu, W., Kientz, M., Flipse, J., Rademacher, E.H., Schmid, M., Jurgens, G., Weijers, D., 2010. MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913-916.
    Schneider, C.A., Rasband, W.S., Eliceiri, K.W., 2012. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671-675.
    Schon, M.A., Nodine, M.D., 2017. Widespread contamination of Arabidopsis embryo and endosperm transcriptome data sets. Plant Cell 29, 608-617.
    Shimotohno, A., Heidstra, R., Blilou, I., Scheres, B., 2018. Root stem cell niche organizer specification by molecular convergence of PLETHORA and SCARECROW transcription factor modules. Genes Dev. 32, 1085-1100.
    Shimotohno, A., Matsubayashi, S., Yamaguchi, M., Uchimiya, H., Umeda, M., 2002. Differential phosphorylation activities of CDK-activating kinases in Arabidopsis thaliana. FEBS letters 534, 69-74.
    Shimotohno, A., Ohno, R., Bisova, K., Sakaguchi, N., Huang, J., Koncz, C., Uchimiya, H., Umeda, M., 2006. Diverse phosphoregulatory mechanisms controlling cyclin-dependent kinase-activating kinases in Arabidopsis. Plant J. 47, 701-710.
    Shimotohno, A., Umeda-Hara, C., Bisova, K., Uchimiya, H., Umeda, M., 2004. The plant-specific kinase CDKF;1 is involved in activating phosphorylation of Cyclin-Dependent Kinase-Activating Kinases in Arabidopsis. Plant Cell 16, 2954-2966.
    Simonini, S., Bemer, M., Bencivenga, S., Gagliardini, V., Pires, N.D., Desvoyes, B., van der Graaff, E., Gutierrez, C., Grossniklaus, U., 2021. The Polycomb group protein MEDEA controls cell proliferation and embryonic patterning in Arabidopsis. Dev. Cell 56, 1945-1960.
    Sofroni, K., Takatsuka, H., Yang, C., Dissmeyer, N., Komaki, S., Hamamura, Y., Bottger, L., Umeda, M., Schnittger, A., 2020. CDKD-dependent activation of CDKA;1 controls microtubule dynamics and cytokinesis during meiosis. J. Cell Biol. 219.
    Song, S.K., Hofhuis, H., Lee, M.M., Clark, S.E., 2008. Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev. Cell 15, 98-109.
    Sozzani, R., Cui, H., Moreno-Risueno, M.A., Busch, W., Van Norman, J.M., Vernoux, T., Brady, S.M., Dewitte, W., Murray, J.A., Benfey, P.N., 2010. Spatiotemporal regulation of cell-cycle genes by SHORTROOT links patterning and growth. Nature 466, 128-132.
    Spartz, A.K., Herman, R.K., Shaw, J.E., 2004. SMU-2 and SMU-1, Caenorhabditis elegans homologs of mammalian spliceosome-associated proteins RED and fSAP57, work together to affect splice site choice. Mol. Cell Biol. 24, 6811-6823.
    Spike, C.A., Shaw, J.E., Herman, R.K., 2001. Analysis of smu-1, a gene that regulates the alternative splicing of unc-52 pre-mRNA in Caenorhabditis elegans. Mol. Cell. Biol. 21, 4985-4995.
    Takatsuka, H., Ohno, R., Umeda, M., 2009. The Arabidopsis cyclin-dependent kinase-activating kinase CDKF;1 is a major regulator of cell proliferation and cell expansion but is dispensable for CDKA activation. Plant J. 59, 475-487.
    Takatsuka, H., Umeda-Hara, C., Umeda, M., 2015. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 82, 1004-1017.
    ten Hove, C.A., Lu, K.J., Weijers, D., 2015. Building a plant: cell fate specification in the early Arabidopsis embryo. Development 142, 420-430.
    ten Hove, C.A., Willemsen, V., de Vries, W.J., van Dijken, A., Scheres, B., Heidstra, R., 2010. SCHIZORIZA encodes a nuclear factor regulating asymmetry of stem cell divisions in the Arabidopsis root. Curr. Biol. 20, 452-457.
    Truernit, E., Bauby, H., Dubreucq, B., Grandjean, O., Runions, J., Barthelemy, J., Palauqui, J.C., 2008. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20, 1494-1503.
    Tsugeki, R., Tanaka-Sato, N., Maruyama, N., Terada, S., Kojima, M., Sakakibara, H., Okada, K., 2015. CLUMSY VEIN, the Arabidopsis DEAH-box Prp16 ortholog, is required for auxin-mediated development. Plant J. 81, 183-197.
    Tzafrir, I., Pena-Muralla, R., Dickerman, A., Berg, M., Rogers, R., Hutchens, S., Sweeney, T.C., McElver, J., Aux, G., Patton, D., Meinke, D., 2004. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 135, 1206-1220.
    Umeda, M., Bhalerao, R.P., Schell, J., Uchimiya, H., Koncz, C., 1998. A distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 95, 5021-5026.
    van Dop, M., Liao, C.Y., Weijers, D., 2015. Control of oriented cell division in the Arabidopsis embryo. Curr. Opin. Plant Biol. 23, 25-30.
    Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., Blue, S.M., Chen, J.Y., Cody, N.A.L., Dominguez, D., et al., 2020. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711-719.
    Velappan, Y., Signorelli, S., Considine, M.J., 2017. Cell cycle arrest in plants: what distinguishes quiescence, dormancy and differentiated G1? Ann. Bot. 120, 495-509.
    Vitting-Seerup, K., Sandelin, A., 2019. IsoformSwitchAnalyzeR: analysis of changes in genome-wide patterns of alternative splicing and its functional consequences. Bioinformatics 35, 4469-4471.
    Wang, R., Estelle, M., 2014. Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr. Opin. Plant Biol. 21, 51-58.
    Weijers, D., Schlereth, A., Ehrismann, J.S., Schwank, G., Kientz, M., Jurgens, G., 2006. Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis. Dev. Cell 10, 265-270.
    Xie, X., Ma, X., Zhu, Q., Zeng, D., Li, G., Liu, Y.G., 2017. CRISPR-GE: A convenient software toolkit for CRISPR-based genome editing. Mol. Plant 10, 1246-1249.
    Xiong, F., Ren, J.J., Wang, Y.Y., Zhou, Z., Qi, H.D., Otegui, M.S., Wang, X.L., 2022. An Arabidopsis retention and splicing complex regulates root and embryo development through pre-mRNA splicing. Plant Physiol. 190, 621-639.
    Xiong, F., Ren, J.J., Yu, Q., Wang, Y.Y., Kong, L.J., Otegui, M.S., Wang, X.L., 2019. AtBUD13 affects pre-mRNA splicing and is essential for embryo development in Arabidopsis. Plant J. 98, 714-726.
    Xiong, F., Liu, H.H., Duan, C.Y., Zhang, B.K., Wei, G., Zhang, Y., Li, S., 2019. Arabidopsis JANUS regulates embryonic pattern formation through Pol II-mediated transcription of WOX2 and PIN7. iScience 19, 1179-1188.
    Xu, G., Zhang, X., 2023. Mechanisms controlling seed size by early endosperm development. Seed Biology 2, 1-11.
    Yang, H., Berry, S., Olsson, T.S.G., Hartley, M., Howard, M., Dean, C., 2017. Distinct phases of Polycomb silencing to hold epigenetic memory of cold in Arabidopsis. Science 357, 1142-1145.
    Yang, L., Chen, X., Wang, Z., Sun, Q., Hong, A., Zhang, A., Zhong, X., Hua, J., 2020. HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. New phytol. 226, 507-522.
    Yoshida, S., Saiga, S., Weijers, D., 2013. Auxin regulation of embryonic root formation. Plant Cell Physiol. 54, 325-332.
    Yu, G., Wang, L.-G., Han, Y., He, Q.-Y., 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 16, 284-287.
    Zhang, X., Li, W., Liu, Y., Li, Y., Li, Y., Yang, W., Chen, X., Pi, L., Yang, H., 2022. Replication protein RPA2A regulates floral transition by cooperating with PRC2 in Arabidopsis. New Phytol. 235, 2439-2453.
    Zhou, X., Shi, C., Zhao, P., Sun, M., 2019. Isolation of living apical and basal cell lineages of early proembryos for transcriptome analysis. Plant Reprod. 32, 105-111.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2) PDF downloads (0) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return