5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 9
Sep.  2021

Characteristic dysbiosis in gout and the impact of a uric acid-lowering treatment, febuxostat on the gut microbiota

doi: 10.1016/j.jgg.2021.06.009
Funds:

Financial support is from the Project of Zhejiang Provincial Department of Education, China (Y202045471) and the Project of Wenzhou Science and Technology, China (NO. Y2020205).

  • Received Date: 2021-05-23
  • Accepted Date: 2021-06-24
  • Rev Recd Date: 2021-06-22
  • Publish Date: 2021-07-09
  • Gut dysbiosis is suggested to play a critical role in the pathogenesis of gout. The aim of our study was to identify the characteristic dysbiosis of the gut microbiota in gout patients and the impact of a commonly used uric acid-lowering treatment, febuxostat on gut microbiota in gout. 16S ribosomal RNA sequencing and metagenomic shotgun sequencing was performed on fecal DNA isolated from 38 untreated gout patients, 38 gout patients treated with febuxostat, and 26 healthy controls. A restriction of gut microbiota biodiversity was detected in the untreated gout patients, and the alteration was partly restored by febuxostat. Biochemical metabolic indexes involved in liver and kidney metabolism were significantly associated with the gut microbiota composition in gout patients. Functional analysis revealed that the gut microbiome of gout patients had an enriched function on carbohydrate metabolism but a lower potential for purine metabolism, which was comparatively enhanced in the febuxostat treated gout patients. A classification microbial model obtained a high mean area under the curve up to 0.973. Therefore, gut dysbiosis characterizings gout could potentially serve as a noninvasive diagnostic tool for gout and may be a promising target of future preventive interventions.
  • These authors contribute equally to this work.
  • Abdou, R.M., Zhu, L., Baker, R.D., Baker, S.S., 2016. Gut microbiota of nonalcoholic fatty liver disease. Dig. Dis. Sci. 61, 1268-1281.
    Ahmetoglu, A., Isik, Y., Aynaci, O., Bahadir, S., Aynaci, F.M., 2003. Proteus syndrome associated with liver involvement: case report. Genet. Couns. 14, 221-226.
    Bajaj, J.S., Hylemon, P.B., Ridlon, J.M., Heuman, D.M., Daita, K., White, M.B., Monteith, P., Noble, N.A., Sikaroodi, M., Gillevet, P.M., 2012. Colonic mucosal microbiome differs from stool microbiome in cirrhosis and hepatic encephalopathy and is linked to cognition and inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 303, G675-G685.
    Bernini, L.J., Simao, A.N.C., de Souza, C.H.B., Alfieri, D.F., Segura, L.G., Costa, G.N., Dichi, I., 2018. Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome. Br. J. Nutr. 120, 645-652.
    Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., 2019. Author correction: reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 1091.
    Brahe, L.K., Le Chatelier, E., Prifti, E., Pons, N., Kennedy, S., Hansen, T., Pedersen, O., Astrup, A., Ehrlich, S.D., Larsen, L.H., 2015. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr. Diabetes 5, e159.
    Bursill, D., Taylor, W.J., Terkeltaub, R., Abhishek, A., So, A.K., Vargas-Santos, A.B., Gaffo, A.L., Rosenthal, A., Tausche, A.K., Reginato, A., 2019. Gout, hyperuricaemia and crystal-associated disease network (G-CAN) consensus statement regarding labels and definitions of disease states of gout. Ann. Rheum. Dis. 78, 1592-1600.
    Cendron, L., Berni, R., Folli, C., Ramazzina, I., Percudani, R., Zanotti, G., 2007. The structure of 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase provides insights into the mechanism of uric acid degradation. J. Biol. Chem. 282, 18182-18189.
    Chen, R.J., Chen, M.H., Chen, Y.L., Hsiao, C.M., Chen, H.M., Chen, S.J., Wu, M.D., Yech, Y.J., Yuan, G.F., Wang, Y.J., 2017. Evaluating the urate-lowering effects of different microbial fermented extracts in hyperuricemic models accompanied with a safety study. J. Food Drug Anal. 25, 597-606.
    Chu, Y., Huang, Y., Huang, Q., Xie, X., Wang, P., Li, J., Liang, L., He, X., Jiang, Y., Wang, M., Metagenomic study revealed the potential role of the gut microbiome in gout. NPJ Biofilms Microbiomes 7, 66.
    Cusa, E., Obradors, N., Baldoma, L., Badia, J., Aguilar, J., 1999. Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyoxylate metabolism in Escherichia coli. J. Bacteriol. 181, 7479-7484.
    Dalbeth, N., Choi, H.K., Joosten, L.A.B., Khanna, P.P., Matsuo, H., Perez-Ruiz, F., Stamp, L.K., 2019. Gout. Nat. Rev. Dis. Primers 5, 69.
    Day, R.O., Kamel, B., Kannangara, D.R., Williams, K.M., Graham, G.G., 2016. Xanthine oxidoreductase and its inhibitors: relevance for gout. Clin. Sci. (Lond) 130, 2167-2180.
    Dehlin, M., Jacobsson, L., Roddy, E., 2020. Global epidemiology of gout: prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 16, 380-390.
    Dessein, P.H., Shipton, E.A., Stanwix, A.E., Joffe, B.I., Ramokgadi, J., 2000. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study. Ann. Rheum. Dis. 59, 539-543.
    Edgar, R.C., 2010. Search and clustering orders of magnitude faster than blast. Bioinformatics 26, 2460-2461.
    Fukuda, S., Toh, H., Hase, K., Oshima, K., Nakanishi, Y., Yoshimura, K., Tobe, T., Clarke, J.M., Topping, D.L., Suzuki, T., 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543-547.
    Ghadimi, D., Yoness Hassan, M.F., Folster-Holst, R., Rocken, C., Ebsen, M., de Vrese, M., Heller, K.J., 2020. Regulation of hepcidin/iron-signalling pathway interactions by commensal bifidobateria plays an important role for the inhibition of metaflammation-related biomarkers. Immunobiology 225, 151874.
    Guo, Z., Zhang, J., Wang, Z., Ang, K.Y., Huang, S., Hou, Q., Su, X., Qiao, J., Zheng, Y., Wang, L., 2016. Intestinal microbiota distinguish gout patients from healthy humans. Sci. Rep. 6, 20602.
    He, K., Hu, Y., Ma, H., Zou, Z., Xiao, Y., Yang, Y., Feng, M., Li, X., Ye, X., 2016. Rhizoma Coptidis alkaloids alleviate hyperlipidemia in B6 mice by modulating gut microbiota and bile acid pathways. Biochim Biophys Acta 1862, 1696-1709.
    Hu, Y., Yang, X., Qin, J., Lu, N., Cheng, G., Wu, N., Pan, Y., Li, J., Zhu, L., Wang, X., 2013. Metagenome-wide analysis of antibiotic resistance genes in a large cohort of human gut microbiota. Nat. Commun. 4, 2151.
    Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., Bork, P., 2017. Fast genome-wide functional annotation through orthology assignment by eggnog-mapper. Mol. Biol. Evol. 34, 2115-2122.
    Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernandez-Plaza, A., Forslund, S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., Jensen, L.J., 2019. Eggnog 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309-D314.
    Ignacio, A., Morales, C.I., Camara, N.O., Almeida, R.R., 2016. Innate sensing of the gut microbiota: modulation of inflammatory and autoimmune diseases. Front. Immunol. 7, 54.
    Jiang, W., Wu, N., Wang, X., Chi, Y., Zhang, Y., Qiu, X., Hu, Y., Li, J., Liu, Y., 2015. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci. Rep. 5, 8096.
    Jung, D.K., Lee, Y., Park, S.G., Park, B.C., Kim, G.H., Rhee, S., 2006. Structural and functional analysis of PucM, a hydrolase in the ureide pathway and a member of the transthyretin-related protein family. Proc. Natl. Acad. Sci. U. S. A. 103, 9790-9795.
    Kashyap, P.C., Chia, N., Nelson, H., Segal, E., Elinav, E., 2017. Microbiome at the frontier of personalized medicine. Mayo. Clin. Proc. 92, 1855-1864.
    Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357-359.
    Li, D., Liu, C.M., Luo, R., Sadakane, K., Lam, T.W., 2015. Megahit: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676.
    Magoc, T., Salzberg, S.L., 2011. Flash: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957-2963.
    Major, T.J., Dalbeth, N., Stahl, E.A., Merriman, T.R., 2018. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 14, 341-353.
    Marchesi, J.R., Adams, D.H., Fava, F., Hermes, G.D., Hirschfield, G.M., Hold, G., Quraishi, M.N., Kinross, J., Smidt, H., Tuohy, K.M., 2016. The gut microbiota and host health: a new clinical frontier. Gut 65, 330-339.
    Marino, P., Maggioni, M., Preatoni, A., Cantoni, A., Invernizzi, F., 1996. Liver abscesses due to listeria monocytogenes. Liver 16, 67-69.
    Martin, M., 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 3.
    Nakatsu, Y., Seno, Y., Kushiyama, A., Sakoda, H., Fujishiro, M., Katasako, A., Mori, K., Matsunaga, Y., Fukushima, T., Kanaoka, R., 2015. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G42-G51.
    Neogi, T., Jansen, T.L., Dalbeth, N., Fransen, J., Schumacher, H.R., Berendsen, D., Brown, M., Choi, H., Edwards, N.L., Janssens, H.J., 2015. 2015 gout classification criteria: an american college of rheumatology/european league against rheumatism collaborative initiative. Ann. Rheum. Dis. 74, 1789-1798.
    Onetto, C., Rios, H., Domenech, A., Schiappacasse, G., Estay, C., 2013. Liver abscess due to listeria monocytogenes. Cir. Esp. 91, 267-269.
    Ren, Z., Fan, Y., Li, A., Shen, Q., Wu, J., Ren, L., Lu, H., Ding, S., Ren, H., Liu, C., 2020. Alterations of the human gut microbiome in chronic kidney disease. Adv. Sci. (Weinh) 7, 2001936.
    Robinson, P.C., 2018. Gout- an update of aetiology, genetics, co-morbidities and management. Maturitas 118, 67-73.
    Rogers, H.W., Callery, M.P., Deck, B., Unanue, E.R., 1996. Listeria monocytogenes induces apoptosis of infected hepatocytes. J. Immunol. 156, 679-684.
    Rognes, T., Flouri, T., Nichols, B., Quince, C., Mahe, F., 2016. Vsearch: a versatile open source tool for metagenomics. PeerJ 4, e2584.
    Schnabl, B., Brenner, D.A., 2014. Interactions between the intestinal microbiome and liver diseases. Gastroenterology 146, 1513-1524.
    Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., Huttenhower, C., 2011. Metagenomic biomarker discovery and explanation. Genome Biol 12, R60.
    Shaaban, M.I., Abdelmegeed, E., Ali, Y.M., 2015. Cloning, expression, and purification of recombinant uricase enzyme from pseudomonas aeruginosa ps43 using Escherichia coli. J. Microbiol. Biotechnol. 25, 887-892.
    Shao, T., Shao, L., Li, H., Xie, Z., He, Z., Wen, C., 2017. Combined signature of the fecal microbiome and metabolome in patients with gout. Front. Microbiol. 8, 268.
    Vieira, A.T., Galvao, I., Amaral, F.A., Teixeira, M.M., Nicoli, J.R., Martins, F.S., 2015. Oral treatment with Bifidobacterium longum 51A reduced inflammation in a murine experimental model of gout. Benef. Microbes 6, 799-806.
    Waller, A., Jordan, K.M., 2017. Use of febuxostat in the management of gout in the United Kingdom. Ther. Adv. Musculoskelet. Dis. 9, 55-64.
    Wang, Y., Fei, Y., Liu, L., Xiao, Y., Pang, Y., Kang, J., Wang, Z., Polygonatum odoratum polysaccharides modulate gut microbiota and mitigate experimentally induced obesity in rats. Int. J. Mol. Sci.19, 3587.
    Zhu, W., Lomsadze, A., Borodovsky, M., 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38, e132.
  • Relative Articles

    [1]Boxun Zhang, Xuan Zhang, Zhen Luo, Jixiang Ren, Xiaotong Yu, Haiyan Zhao, Yitian Wang, Wenhui Zhang, Weiwei Tian, Xiuxiu Wei, Qiyou Ding, Haoyu Yang, Zishan Jin, Xiaolin Tong, Jun Wang, Linhua Zhao. Microbiome and metabolome dysbiosis analysis in impaired glucose tolerance for the prediction of progression to diabetes mellitus[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.005
    [2]Yue Wu, Jun Zhou, Yunfan Yang. Peripheral and central control of obesity by primary cilia[J]. Journal of Genetics and Genomics, 2023, 50(5): 295-304. doi: 10.1016/j.jgg.2022.12.006
    [3]Jin Wu, Yingbo Chen, Xue Li, Liyuan Ran, Xiangdong Liu, Xiaoshuang Wang, Mingming Zhen, Shanshan Shao, Li Zeng, Chunru Wang, Bin Liang, Jiajun Zhao, Yingjie Wu. Functionalized gadofullerene ameliorates impaired glycolipid metabolism in type 2 diabetic mice[J]. Journal of Genetics and Genomics, 2022, 49(4): 364-376. doi: 10.1016/j.jgg.2021.09.004
    [4]Zhejun Ji, Guang-Hui Liu, Jing Qu. Mitochondrial sirtuins, metabolism, and aging[J]. Journal of Genetics and Genomics, 2022, 49(4): 287-298. doi: 10.1016/j.jgg.2021.11.005
    [5]Xuezhen Liu, Miaoyan Shen, Han Yan, Pinpin Long, Haijing Jiang, Yizhi Zhang, Lue Zhou, Kuai Yu, Gaokun Qiu, Handong Yang, Xiulou Li, Xinwen Min, Meian He, Xiaomin Zhang, Hyungwon Choi, Chaolong Wang, Tangchun Wu. Alternations in the gut microbiota and metabolome with newly diagnosed unstable angina[J]. Journal of Genetics and Genomics, 2022, 49(3): 240-248. doi: 10.1016/j.jgg.2021.11.009
    [6]Ying Yu, Bin Liu, Xiaolin Liu, Xuan Zhang, Wenhui Zhang, He Tian, Guanghou Shui, Wenzhao Wang, Moshi Song, Jun Wang. Mesenteric lymph system constitutes the second route in gut-liver axis and transports metabolism-modulating gut microbial metabolites[J]. Journal of Genetics and Genomics, 2022, 49(7): 612-623. doi: 10.1016/j.jgg.2022.03.012
    [7]Li Xu, Qiankun Zhang, Xiaowei Dou, Yipeng Wang, Jianwei Wang, Yong Zhou, Xingyin Liu, Jing Li. Fecal microbiota transplantation from young donor mice improves ovarian function in aged mice[J]. Journal of Genetics and Genomics, 2022, 49(11): 1042-1052. doi: 10.1016/j.jgg.2022.05.006
    [8]Chunbing Liu, Jingyang Hu, Yajiang Wu, David M. Irwin, Wu Chen, Zhigang Zhang, Li Yu. Comparative study of gut microbiota from captive and confiscated-rescued wild pangolins[J]. Journal of Genetics and Genomics, 2021, 48(9): 825-835. doi: 10.1016/j.jgg.2021.07.009
    [9]You Yu, Fangqing Zhao. Microbiota-gut-brain axis in autism spectrum disorder[J]. Journal of Genetics and Genomics, 2021, 48(9): 755-762. doi: 10.1016/j.jgg.2021.07.001
    [10]Rong Xu, Pengcheng Liu, Tao Zhang, Qunfu Wu, Mei Zeng, Yingying Ma, Xia Jin, Jin Xu, Zhigang Zhang, Chiyu Zhang. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19[J]. Journal of Genetics and Genomics, 2021, 48(9): 803-814. doi: 10.1016/j.jgg.2021.05.004
    [11]Wanglong Gou, Yuanqing Fu, Liang Yue, Geng-Dong Chen, Xue Cai, Menglei Shuai, Fengzhe Xu, Xiao Yi, Hao Chen, Yi Zhu, Mian-Li Xiao, Zengliang Jiang, Zelei Miao, Congmei Xiao, Bo Shen, Xiaomai Wu, Haihong Zhao, Wenhua Ling, Jun Wang, Yu-Ming Chen, Tiannan Guo, Ju-Sheng Zheng. Gut microbiota, inflammation, and molecular signatures of host response to infection[J]. Journal of Genetics and Genomics, 2021, 48(9): 792-802. doi: 10.1016/j.jgg.2021.04.002
    [12]Xifan Wang, Yanling Hao, Xiaoxue Liu, Shoujuan Yu, Weibo Zhang, Songtao Yang, Zhengquan Yu, Fazheng Ren. Gut microbiota from end-stage renal disease patients disrupt gut barrier function by excessive production of phenol[J]. Journal of Genetics and Genomics, 2019, 46(8): 409-412. doi: 10.1016/j.jgg.2019.03.015
    [13]Michael J. Gambello, Hong Li. Current strategies for the treatment of inborn errors of metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 61-70. doi: 10.1016/j.jgg.2018.02.001
    [14]Chun Song, Han Yan, Hanming Wang, Yan Zhang, Huiqing Cao, Yiqi Wan, Lingbao Kong, Shenghan Chen, Hong Xu, Bingxing Pan, Jin Zhang, Guohuang Fan, Hongbo Xin, Zicai Liang, Weiping Jia, Xiao-Li Tian. AQR is a novel type 2 diabetes-associated gene that regulates signaling pathways critical for glucose metabolism[J]. Journal of Genetics and Genomics, 2018, 45(2): 111-120. doi: 10.1016/j.jgg.2017.11.007
    [15]Anna Koprivova, Stanislav Kopriva. Sulfur metabolism and its manipulation in crops[J]. Journal of Genetics and Genomics, 2016, 43(11): 623-629. doi: 10.1016/j.jgg.2016.07.001
    [16]Manuel F. Garavito, Heidy Y. Narváez-Ortiz, Barbara H. Zimmermann. Pyrimidine Metabolism: Dynamic and Versatile Pathways in Pathogens and Cellular Development[J]. Journal of Genetics and Genomics, 2015, 42(5): 195-205. doi: 10.1016/j.jgg.2015.04.004
    [17]Ji-Long Liu. May the Force Be with You: Metabolism of Arginine and Pyrimidines[J]. Journal of Genetics and Genomics, 2015, 42(5): 179-180. doi: 10.1016/j.jgg.2015.05.003
    [18]Joshua J. Gooley, Eric Chern-Pin Chua. Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics[J]. Journal of Genetics and Genomics, 2014, 41(5): 231-250. doi: 10.1016/j.jgg.2014.04.001
    [19]Xinran Xu, Jia Chen. One-carbon metabolism and breast cancer: an epidemiological perspective[J]. Journal of Genetics and Genomics, 2009, 36(4): 203-214. doi: 10.1016/S1673-8527(08)60108-3
    [20]Yin Leng Lee, Xinran Xu, Sylvan Wallenstein, Jia Chen. Gene expression profiles of the one-carbon metabolism pathway[J]. Journal of Genetics and Genomics, 2009, 36(5): 277-282. doi: 10.1016/S1673-8527(08)60115-0
  • Cited by

    Periodical cited type(31)

    1. Zeng, W., Ghamry, M., Zhao, Z. et al. Hyperuricemia insights: Formation, targets and hypouricemic natural products. Food Bioscience, 2025, 64: 105944. doi:10.1016/j.fbio.2025.105944
    2. Wang, L., Li, J., Wang, B. et al. Progress in modeling avian hyperuricemia and gout (Review). Biomedical Reports, 2025, 22(1): 1. doi:10.3892/br.2024.1879
    3. Zhao, F., Tie, N., Kwok, L.-Y. et al. Baseline gut microbiome as a predictive biomarker of response to probiotic adjuvant treatment in gout management. Pharmacological Research, 2024, 209: 107445. doi:10.1016/j.phrs.2024.107445
    4. Singh, A.K., Kumar Durairajan, S.S., Durairajan, S.S.K. et al. Elucidating the role of gut microbiota dysbiosis in hyperuricemia and gout: Insights and therapeutic strategies. World Journal of Gastroenterology, 2024, 30(40): 4404-4410. doi:10.3748/wjg.v30.i40.4404
    5. Li, H., Su, Q., Fu, D. et al. Alteration of gut microbiome in goslings infected with goose astrovirus. Poultry Science, 2024, 103(8): 103869. doi:10.1016/j.psj.2024.103869
    6. Lu, H., Zhao, K., Xue, Y. et al. Research Progress on the Correlation between Different Dietary Patterns and Hyperuricemia Mediated by Intestinal Flora | [肠道菌群介导的不同饮食模式与高尿酸血症相关性研究进展]. Shipin Kexue/Food Science, 2024, 45(9): 330-338. doi:10.7506/spkx1002-6630-20230316-160
    7. Ren, L., Wang, S., Liu, S. et al. Postbiotic of Pediococcus acidilactici GQ01, a Novel Probiotic Strain Isolated from Natural Fermented Wolfberry, Attenuates Hyperuricaemia in Mice through Modulating Uric Acid Metabolism and Gut Microbiota. Foods, 2024, 13(6): 923. doi:10.3390/foods13060923
    8. Zeng, J., Li, Y., Zou, Y. et al. Intestinal toxicity alleviation and efficacy potentiation through therapeutic administration of Lactobacillus paracasei GY-1 in the treatment of gout flares with colchicine. Food and Function, 2024, 15(3): 1671-1688. doi:10.1039/d3fo04858f
    9. Tang, C., Li, L., Jin, X. et al. Investigating the Impact of Gut Microbiota on Gout Through Mendelian Randomization. Orthopedic Research and Reviews, 2024, 16: 125-136. doi:10.2147/ORR.S454211
    10. Mogawer, E.S., Hegab, M.M., Elshahaly, M. et al. Gout: The role of diet, functional foods, and the microbiome and their interplay prevalent in North America and globally. Functional Foods and Chronic Disease: Role of Sensory, Chemistry and Nutrition, 2024. doi:10.1016/B978-0-323-91747-6.00010-X
    11. Li, Y., Wu, Z., Wang, Z. et al. Research advances in the therapeutic potential of xanthine oxidoreductase inhibitors for periodontitis. Journal of Prevention and Treatment for Stomatological Diseases, 2023, 31(12): 901-906. doi:10.12016/j.issn.2096-1456.2023.12.010
    12. Terkeltaub, R.. Emerging Urate-Lowering Drugs and Pharmacologic Treatment Strategies for Gout: A Narrative Review. Drugs, 2023, 83(16): 1501-1521. doi:10.1007/s40265-023-01944-y
    13. Dang, K., Zhang, N., Gao, H. et al. Influence of intestinal microecology in the development of gout or hyperuricemia and the potential therapeutic targets. International Journal of Rheumatic Diseases, 2023, 26(10): 1911-1922. doi:10.1111/1756-185X.14888
    14. Zhao, F., Zhao, Z., Man, D. et al. Changes in gut microbiota structure and function in gout patients. Food Bioscience, 2023, 54: 102912. doi:10.1016/j.fbio.2023.102912
    15. Mahendra, A.N., Jawi, I.M., Astawa, N.M. et al. Renoprotective Effects of Anthocyanins Against Uric Acid-Instigated Injury: Mini Review with a Special Emphasis on Purple Sweet Potato (Ipomoea batatas L.) Anthocyanins. Biomedical and Pharmacology Journal, 2023, 16(2): 629-637. doi:10.13005/bpj/2645
    16. Yang, J., Feng, P., Ling, Z. et al. Nickel exposure induces gut microbiome disorder and serum uric acid elevation. Environmental Pollution, 2023, 324: 121349. doi:10.1016/j.envpol.2023.121349
    17. Liu, Y.-H., Li, M., Duan, L.-L. et al. Dysbiosis of gut microbiota in hyperuricemia: research progress | [肠道菌群失调与高尿酸血症关系的研究进展]. Chinese Journal of Microecology, 2023, 35(2): 229-233. doi:10.13381/j.cnki.cjm.202302018
    18. Huang, K.-C., Chang, Y.-T., Pranata, R. et al. Alleviation of Hyperuricemia by Strictinin in AML12 Mouse Hepatocytes Treated with Xanthine and in Mice Treated with Potassium Oxonate. Biology, 2023, 12(2): 329. doi:10.3390/biology12020329
    19. Lv, Q., Zhou, J., Wang, C. et al. A dynamics association study of gut barrier and microbiota in hyperuricemia. Frontiers in Microbiology, 2023, 14: 1287468. doi:10.3389/fmicb.2023.1287468
    20. Zaninelli, T.H., Martelossi-Cebinelli, G., Saraiva-Santos, T. et al. New drug targets for the treatment of gout arthritis: what’s new?. Expert Opinion on Therapeutic Targets, 2023, 27(8): 679-703. doi:10.1080/14728222.2023.2247559
    21. Rodríguez, J.M., Garranzo, M., Segura, J. et al. A randomized pilot trial assessing the reduction of gout episodes in hyperuricemic patients by oral administration of Ligilactobacillus salivarius CECT 30632, a strain with the ability to degrade purines. Frontiers in Microbiology, 2023, 14: 1111652. doi:10.3389/fmicb.2023.1111652
    22. Ul-Haq, A., Seo, H., Jo, S. et al. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Polish Journal of Microbiology, 2022, 71(4): 601-613. doi:10.33073/pjm-2022-045
    23. ul-Haq, A., Lee, K.-A., Seo, H. et al. Characteristic alterations of gut microbiota in uncontrolled gout. Journal of Microbiology, 2022, 60(12): 1178-1190. doi:10.1007/s12275-022-2416-1
    24. Tong, S., Zhang, P., Cheng, Q. et al. The role of gut microbiota in gout: Is gut microbiota a potential target for gout treatment. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1051682. doi:10.3389/fcimb.2022.1051682
    25. de Almeida, L., Devi, S., Indramohan, M. et al. POP1 inhibits MSU-induced inflammasome activation and ameliorates gout. Frontiers in Immunology, 2022, 13: 912069. doi:10.3389/fimmu.2022.912069
    26. Wang, S., Zhang, L., Hao, D. et al. Research progress of risk factors and early diagnostic biomarkers of gout-induced renal injury. Frontiers in Immunology, 2022, 13: 908517. doi:10.3389/fimmu.2022.908517
    27. Wang, Z., Li, Y., Liao, W. et al. Gut microbiota remodeling: A promising therapeutic strategy to confront hyperuricemia and gout. Frontiers in Cellular and Infection Microbiology, 2022, 12: 935723. doi:10.3389/fcimb.2022.935723
    28. Zhang, X., Hou, Y., Li, Y. et al. Taxonomic and Metabolic Signatures of Gut Microbiota for Assessing the Severity of Depression and Anxiety in Major Depressive Disorder Patients. Neuroscience, 2022, 496: 179-189. doi:10.1016/j.neuroscience.2022.06.024
    29. Yuan, X., Chen, R., Zhang, Y. et al. Altered Gut Microbiota in Children With Hyperuricemia. Frontiers in Endocrinology, 2022, 13: 848715. doi:10.3389/fendo.2022.848715
    30. Pugin, B., Plüss, S., Mujezinovic, D. et al. Optimized UV-Spectrophotometric Assay to Screen Bacterial Uricase Activity Using Whole Cell Suspension. Frontiers in Microbiology, 2022, 13: 853735. doi:10.3389/fmicb.2022.853735
    31. Eliseev, M.S., Kharlamova, E.N., Zhelyabina, O.V. et al. Microbiota as a new pathogenetic factor in the development of chronic hyperuricemia and gout. Part 2: gout therapy and the gut microbiota. Sovremennaya Revmatologiya, 2022, 16(6): 7-11. doi:10.14412/1996-7012-2022-6-7-11

    Other cited types(6)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (291) PDF downloads (28) Cited by (37)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return