5.9
CiteScore
5.9
Impact Factor
Volume 48 Issue 7
Jul.  2021

Delineating the longitudinal tumor evolution using organoid models

doi: 10.1016/j.jgg.2021.06.010
Funds:

This work was supported by the grants from the Natural Science Foundation of Guangdong (2021B1515020042 to Z.H.) and SIAT Innovation Program for Excellent Young Researchers (E1G053 to Z.L.) and China Postdoctoral Science Foundation (2021M693303 to Z.L.). We thank Kasper Karlsson for constructive comments.

  • Received Date: 2021-04-12
  • Accepted Date: 2021-06-16
  • Rev Recd Date: 2021-06-11
  • Publish Date: 2021-07-20
  • Cancer is an evolutionary process fueled by genetic or epigenetic alterations in the genome. Understanding the evolutionary dynamics that are operative at different stages of tumor progression might inform effective strategies in early detection, diagnosis, and treatment of cancer. However, our understanding on the dynamics of tumor evolution through time is very limited since it is usually impossible to sample patient tumors repeatedly. The recent advances in in vitro 3D organoid culture technologies have opened new avenues for the development of more realistic human cancer models that mimic many in vivo biological characteristics in human tumors. Here, we review recent progresses and challenges in cancer genomic evolution studies and advantages of using tumor organoids to study cancer evolution. We propose to establish an experimental evolution model based on continuous passages of patient-derived organoids and longitudinal sampling to study clonal dynamics and evolutionary patterns over time. Development and integration of population genetic theories and computational models into time-course genomic data in tumor organoids will help to pinpoint the key cellular mechanisms underlying cancer evolutionary dynamics, thus providing novel insights on therapeutic strategies for highly dynamic and heterogeneous tumors.

  • Alexandrov, L.B., Jones, P.H., Wedge, D.C., Sale, J.E., Campbell, P.J., Nik-Zainal, S., Stratton, M.R., 2015. Clock-like mutational processes in human somatic cells. Nat. Genet. 47, 1402-1407.
    Armitage, P., Doll, R., 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1-12.
    Baca, S.C., Prandi, D., Lawrence, M.S., Mosquera, J.M., Romanel, A., Drier, Y., Park, K., Kitabayashi, N., MacDonald, T.Y., Ghandi, M., et al., 2013. Punctuated evolution of prostate cancer genomes. Cell 153, 666-677.
    Bakhoum, S.F., Landau, D.A., 2017. Cancer evolution:No room for negative selection. Cell 171, 987-989.
    Barrick, J.E., Lenski, R.E., 2013. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827-839.
    Ben-David, U., Beroukhim, R., Golub, T.R., 2019. Genomic evolution of cancer models:perils and opportunities. Nat. Rev. Cancer 19, 97-109.
    Bhang, H.E., Ruddy, D.A., Krishnamurthy Radhakrishna, V., Caushi, J.X., Zhao, R., Hims, M.M., Singh, A.P., Kao, I., Rakiec, D., Shaw, P., et al., 2015. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21, 440-448.
    Bian, S., Hou, Y., Zhou, X., Li, X., Yong, J., Wang, Y., Wang, W., Yan, J., Hu, B., Guo, H., et al., 2018. Single-cell multiomics sequencing and analyses of human colorectal cancer. Science 362, 1060-1063.
    Black, J.R.M., McGranahan, N., 2021. Genetic and non-genetic clonal diversity in cancer evolution. Nat. Rev. Cancer 21, 379-392.
    Blount, Z.D., Borland, C.Z., Lenski, R.E., 2008. Historical contingency and the evolution of a key innovation in an experimental population of escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 105, 7899-7906.
    Blount, Z.D., Lenski, R.E., Losos, J.B., 2018. Contingency and determinism in evolution:replaying life's tape. Science 362, eaam5979.
    Bolhaqueiro, A.C.F., Ponsioen, B., Bakker, B., Klaasen, S.J., Kucukkose, E., van Jaarsveld, R.H., Vivie, J., Verlaan-Klink, I., Hami, N., Spierings, D.C.J., et al., 2019. Ongoing chromosomal instability and karyotype evolution in human colorectal cancer organoids. Nat. Genet. 51, 824-834.
    Brastianos, P.K., Carter, S.L., Santagata, S., Cahill, D.P., Taylor-Weiner, A., Jones, R.T., Van Allen, E.M., Lawrence, M.S., Horowitz, P.M., Cibulskis, K., et al., 2015. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 5, 1164-1177.
    Broutier, L., Mastrogiovanni, G., Verstegen, M.M., Francies, H.E., Gavarro, L.M., Bradshaw, C.R., Allen, G.E., Arnes-Benito, R., Sidorova, O., Gaspersz, M.P., et al., 2017. Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat. Med. 23, 1424-1435.
    Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder, M.P., Chang, H.Y., Greenleaf, W.J., 2015. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486-490.
    Campbell, P.J., Yachida, S., Mudie, L.J., Stephens, P.J., Pleasance, E.D., Stebbings, L.A., Morsberger, L.A., Latimer, C., McLaren, S., Lin, M.L., et al., 2010. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109-1113.
    Chen, X.X., Zhong, Q., Liu, Y., Yan, S.M., Chen, Z.H., Jin, S.Z., Xia, T.L., Li, R.Y., Zhou, A.J., Su, Z., et al., 2017. Genomic comparison of esophageal squamous cell carcinoma and its precursor lesions by multi-region whole-exome sequencing. Nat. Commun. 8, 524.
    Clevers, H., Tuveson, D.A., 2019. Organoid models for cancer research. Annu. Rev. Cancer Biol. 3, 223-234.
    Cross, W., Kovac, M., Mustonen, V., Temko, D., Davis, H., Baker, A.M., Biswas, S., Arnold, R., Chegwidden, L., Gatenbee, C., et al., 2018. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661-1672.
    Curtius, K., Wright, N.A., Graham, T.A., 2017. Evolution of premalignant disease. Cold Spring Harb Perspect. Med. 7, a026542.
    Davis, A., Gao, R., Navin, N., 2017. Tumor evolution:linear, branching, neutral or punctuated? Biochim. Biophys. Acta Rev. Cancer 1867, 151-161.
    Della Chiara, G., Gervasoni, F., Fakiola, M., Godano, C., D'Oria, C., Azzolin, L., Bonnal, R.J.P., Moreni, G., Drufuca, L., Rossetti, G., et al., 2021. Epigenomic landscape of human colorectal cancer unveils an aberrant core of pan-cancer enhancers orchestrated by YAP/TA. Nat. Commun. 12, 2340.
    Devarasetty, M., Forsythe, S.D., Shelkey, E., Soker, S., 2020. In vitro modeling of the tumor microenvironment in tumor organoids. Tissue Eng. Regen. Med. 17, 759-771.
    Diaz Jr., L.A., Williams, R.T., Wu, J., Kinde, I., Hecht, J.R., Berlin, J., Allen, B., Bozic, I., Reiter, J.G., Nowak, M.A., et al., 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537-540.
    Ding, L., Ley, T.J., Larson, D.E., Miller, C.A., Koboldt, D.C., Welch, J.S., Ritchey, J.K., Young, M.A., Lamprecht, T., McLellan, M.D., et al., 2012. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506-510.
    Doglioni, G., Parik, S., Fendt, S.M., 2019. Interactions in the (pre)metastatic niche support metastasis formation. Front. Oncol. 9, 219.
    Drost, J., van Jaarsveld, R.H., Ponsioen, B., Zimberlin, C., van Boxtel, R., Buijs, A., Sachs, N., Overmeer, R.M., Offerhaus, G.J., Begthel, H., et al., 2015. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521, 43-47.
    Fearon, E.R., Vogelstein, B., 1990. A genetic model for colorectal tumorigenesis. Cell 61, 759-767.
    Flavahan, W.A., Gaskell, E., Bernstein, B.E., 2017. Epigenetic plasticity and the hallmarks of cancer. Science 357, eaal2380.
    Forment, J.V., Kaidi, A., Jackson, S.P., 2012. Chromothripsis and cancer:causes and consequences of chromosome shattering. Nat. Rev. Cancer 12, 663-670.
    Fujii, M., Shimokawa, M., Date, S., Takano, A., Matano, M., Nanki, K., Ohta, Y., Toshimitsu, K., Nakazato, Y., Kawasaki, K., et al., 2016. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18, 827-838.
    Gao, R., Davis, A., McDonald, T.O., Sei, E., Shi, X., Wang, Y., Tsai, P.C., Casasent, A., Waters, J., Zhang, H., et al., 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119-1130.
    Gerlinger, M., Horswell, S., Larkin, J., Rowan, A.J., Salm, M.P., Varela, I., Fisher, R., McGranahan, N., Matthews, N., Santos, C.R., et al., 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225-233.
    Gerlinger, M., Rowan, A.J., Horswell, S., Math, M., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., et al., 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883-892.
    Gerrish, P.J., Lenski, R.E., 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102-103, 127-144.
    Good, B.H., McDonald, M.J., Barrick, J.E., Lenski, R.E., Desai, M.M., 2017. The dynamics of molecular evolution over 60,000 generations. Nature 551, 45-50.
    Gould, S.J., 2002. The structure of evolutionary theory. Belknap Press, Cambridge, Massachusetts and London.
    Greaves, M., 2015. Evolutionary determinants of cancer. Cancer Discov. 5, 806-820.
    Greaves, M., Maley, C.C., 2012. Clonal evolution in cancer. Nature 481, 306-313.
    Hartl, D.L., Clark, A.G., 2007. Principles of Population Genetics. Sinauer Associates, Inc., Sunderland, Massachusetts.
    Hill, W.G., Robertson, A., 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8, 269-294.
    Hope, E.A., Amorosi, C.J., Miller, A.W., Dang, K., Heil, C.S., Dunham, M.J., 2017. Experimental evolution reveals favored adaptive routes to cell aggregation in yeast. Genetics 206, 1153-1167.
    Hu, Z., Ding, J., Ma, Z., Sun, R., Seoane, J.A., Scott Shaffer, J., Suarez, C.J., Berghoff, A.S., Cremolini, C., Falcone, A., et al., 2019. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113-1122.
    Hu, Z., Li, Z., Ma, Z., Curtis, C., 2020. Multi-cancer analysis of clonality and the timing of systemic spread in paired primary tumors and metastases. Nat. Genet. 52, 701-708.
    Hu, Z., Sun, R., Curtis, C., 2017. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim. Biophys. Acta. Rev. Cancer 1867, 109-126.
    Huang, S., 2021. Reconciling non-genetic plasticity with somatic evolution in cancer. Trends Cancer 7, 309-322.
    Jimenez-Sanchez, A., Memon, D., Pourpe, S., Veeraraghavan, H., Li, Y., Vargas, H.A., Gill, M.B., Park, K.J., Zivanovic, O., Konner, J., et al., 2017. Heterogeneous tumor-immune microenvironments among differentially growing metastases in an ovarian cancer patient. Cell 170, 927-938. e920.
    Johnson, B.E., Mazor, T., Hong, C., Barnes, M., Aihara, K., McLean, C.Y., Fouse, S.D., Yamamoto, S., Ueda, H., Tatsuno, K., et al., 2014. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189-193.
    Knudson Jr., A.G., 1971. Mutation and cancer:statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U. S. A. 68, 820-823.
    Kram, K.E., Geiger, C., Ismail, W.M., Lee, H., Tang, H., Foster, P.L., Finkel, S.E., 2017. Adaptation of Escherichia coli to long-term serial passage in complex medium:evidence of parallel evolution. mSystems 2, e00192-16.
    Krieger, T.G., LeBlanc-Soto, S., Jabs, J., Ten, F.W., Ishaque, N., Jechow, K., Giri, A., Eils, R., Strobel, O., Conrad, C., 2020. Single-cell analysis of patient-derived PDAC organoids reveals cell state heterogeneity and a conserved developmental hierarchy. bioRxiv. https://doi.org/10.1101/2020.08.23.263160.
    Lakatos, E., Williams, M.J., Schenck, R.O., Cross, W.C.H., Househam, J., Zapata, L., Werner, B., Gatenbee, C., Robertson-Tessi, M., Barnes, C.P., et al., 2020. Evolutionary dynamics of neoantigens in growing tumors. Nat. Genet. 52, 1057-1066.
    Lamprecht, S., Schmidt, E.M., Blaj, C., Hermeking, H., Jung, A., Kirchner, T., Horst, D., 2017. Multicolor lineage tracing reveals clonal architecture and dynamics in colon cancer. Nat. Commun. 8, 1406.
    Lancaster, M.A., Knoblich, J.A., 2014. Organogenesis in a dish:modeling development and disease using organoid technologies. Science 345, 1247125.
    Li, L., Knutsdottir, H., Hui, K., Weiss, M.J., He, J., Philosophe, B., Cameron, A.M., Wolfgang, C.L., Pawlik, T.M., Ghiaur, G., et al., 2019. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4, e121490.
    Lee, S.H., Hu, W., Matulay, J.T., Silva, M.V., Owczarek, T.B., Kim, K., Chua, C.W., Barlow, L.J., Kandoth, C., Williams, A.B., et al., 2018. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173, 515-528. e517.
    Li, X., Francies, H.E., Secrier, M., Perner, J., Miremadi, A., Galeano-Dalmau, N., Barendt, W.J., Letchford, L., Leyden, G.M., Goffin, E.K., et al., 2018. Organoid cultures recapitulate esophageal adenocarcinoma heterogeneity providing a model for clonality studies and precision therapeutics. Nat. Commun. 9, 2983.
    Ling, S., Hu, Z., Yang, Z., Yang, F., Li, Y., Lin, P., Chen, K., Dong, L., Cao, L., Tao, Y., et al., 2015. Extremely high genetic diversity in a single tumor points to prevalence of non-darwinian cell evolution. Proc. Natl. Acad. Sci. U. S. A. 112, E6496-E6505.
    Lopez, S., Lim, E.L., Horswell, S., Haase, K., Huebner, A., Dietzen, M., Mourikis, T.P., Watkins, T.B.K., Rowan, A., Dewhurst, S.M., et al., 2020. Interplay between whole-genome doubling and the accumulation of deleterious alterations in cancer evolution. Nat. Genet. 52, 283-293.
    Maddison, W.P., Knowles, L.L., 2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55, 21-30.
    Martens, E.A., Kostadinov, R., Maley, C.C., Hallatschek, O., 2011. Spatial structure increases the waiting time for cancer. New J. Phys. 13, 115014.
    Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J., Haase, K., Van Loo, P., Davies, H., Stratton, M.R., Campbell, P.J., 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029-1041. e1021.
    McFarland, C.D., Mirny, L.A., Korolev, K.S., 2014. Tug-of-war between driver and passenger mutations in cancer and other adaptive processes. Proc. Natl. Acad. Sci. U. S. A. 111, 15138-15143.
    McFarland, C.D., Yaglom, J.A., Wojtkowiak, J.W., Scott, J.G., Morse, D.L., Sherman, M.Y., Mirny, L.A., 2017. The damaging effect of passenger mutations on cancer progression. Cancer Res. 77, 4763-4772.
    McGranahan, N., Swanton, C., 2017. Clonal heterogeneity and tumor evolution:past, present, and the future. Cell 168, 613-628.
    McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., Shendure, J., 2016. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353, aaf7907.
    Neal, J.T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C.L., Ju, J., Liu, I.H., Chiou, S.H., Salahudeen, A.A., Smith, A.R., et al., 2018. Organoid modeling of the tumor immune microenvironment. Cell 175, 1972-1988. e1916.
    Nik-Zainal, S., Alexandrov, L.B., Wedge, D.C., Van Loo, P., Greenman, C.D., Raine, K., Jones, D., Hinton, J., Marshall, J., Stebbings, L.A., et al., 2012.
    Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979-993.
    Noble, R., Burri, D., Kather, J.N., Beerenwinkel, N., 2019. Spatial structure governs the mode of tumour evolution. bioRxiv. https://doi.org/10.1101/586735.
    Nordling, C.O., 1953. A new theory on cancer-inducing mechanism. Br. J. Cancer 7, 68-72.
    Nowell, P.C., 1976. The clonal evolution of tumor cell populations. Science 194, 23-28.
    O'Rourke, K.P., Loizou, E., Livshits, G., Schatoff, E.M., Baslan, T., Manchado, E., Simon, J., Romesser, P.B., Leach, B., Han, T., et al., 2017. Transplantation of engineered organoids enables rapid generation of metastatic mouse models of colorectal cancer. Nat. Biotechnol. 35, 577-582.
    Quinn, J.J., Jones, M.G., Okimoto, R.A., Nanjo, S., Chan, M.M., Yosef, N., Bivona, T.G., Weissman, J.S., 2021. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 371, eabc1944.
    Reeves, M.Q., Kandyba, E., Harris, S., Del Rosario, R., Balmain, A., 2018. Multicolour lineage tracing reveals clonal dynamics of squamous carcinoma evolution from initiation to metastasis. Nat. Cell Biol. 20, 699-709.
    Roe, J.S., Hwang, C.I., Somerville, T.D.D., Milazzo, J.P., Lee, E.J., Da Silva, B., Maiorino, L., Tiriac, H., Young, C.M., Miyabayashi, K., et al., 2017. Enhancer reprogramming promotes pancreatic cancer metastasis. Cell 170, 875-888. e820.
    Roerink, S.F., Sasaki, N., Lee-Six, H., Young, M.D., Alexandrov, L.B., Behjati, S., Mitchell, T.J., Grossmann, S., Lightfoot, H., Egan, D.A., et al., 2018. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457-462.
    Schumacher, D., Andrieux, G., Boehnke, K., Keil, M., Silvestri, A., Silvestrov, M., Keilholz, U., Haybaeck, J., Erdmann, G., Sachse, C., et al., 2019. Heterogeneous pathway activation and drug response modelled in colorectal-tumor-derived 3D cultures. PLoS Genet. 15, e1008076.
    Shi, H., Hugo, W., Kong, X., Hong, A., Koya, R.C., Moriceau, G., Chodon, T., Guo, R., Johnson, D.B., Dahlman, K.B., et al., 2014. Acquired resistance and clonal evolution in melanoma during braf inhibitor therapy. Cancer Discov 4, 80-93.
    Sottoriva, A., Kang, H., Ma, Z., Graham, T.A., Salomon, M.P., Zhao, J., Marjoram, P., Siegmund, K., Press, M.F., Shibata, D., et al., 2015. A big bang model of human colorectal tumor growth. Nat. Genet. 47, 209-216.
    Stephens, P.J., Greenman, C.D., Fu, B., Yang, F., Bignell, G.R., Mudie, L.J., Pleasance, E.D., Lau, K.W., Beare, D., Stebbings, L.A., et al., 2011. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27-40.
    Sun, R., Hu, Z., Sottoriva, A., Graham, T.A., Harpak, A., Ma, Z., Fischer, J.M., Shibata, D., Curtis, C., 2017. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49, 1015-1024.
    Swanton, C., 2020. Take lessons from cancer evolution to the clinic. Nature 581, 382-383.
    Tabernero, J., Lenz, H.J., Siena, S., Sobrero, A., Falcone, A., Ychou, M., Humblet, Y., Bouche, O., Mineur, L., Barone, C., et al., 2015. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer:a retrospective, exploratory analysis of the correct trial. Lancet Oncol. 16, 937-948.
    Tao, Y., Kang, B., Petkovich, D.A., Bhandari, Y.R., In, J., Stein-O'Brien, G., Kong, X., Xie, W., Zachos, N., Maegawa, S., et al., 2019. Aging-like spontaneous epigenetic silencing facilitates wnt activation, stemness, and brafv600e-induced tumorigenesis. Cancer Cell 35, 315-328. e316.
    Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth 2nd, M.H., Treacy, D., Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al., 2016. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-Seq. Science 352, 189-196.
    Vasudevan, A., Schukken, K.M., Sausville, E.L., Girish, V., Adebambo, O.A., Sheltzer, J.M., 2021. Aneuploidy as a promoter and suppressor of malignant growth. Nat. Rev. Cancer 21, 89-103.
    Voronina, N., Wong, J.K.L., Hubschmann, D., Hlevnjak, M., Uhrig, S., Heilig, C.E., Horak, P., Kreutzfeldt, S., Mock, A., Stenzinger, A., et al., 2020. The landscape of chromothripsis across adult cancer types. Nat. Commun. 11, 2320.
    Wagner, D.E., Klein, A.M., 2020. Lineage tracing meets single-cell omics:opportunities and challenges. Nat. Rev. Genet. 21, 410-427.
    Wang, J., Cazzato, E., Ladewig, E., Frattini, V., Rosenbloom, D.I., Zairis, S., Abate, F., Liu, Z., Elliott, O., Shin, Y.J., et al., 2016. Clonal evolution of glioblastoma under therapy. Nat. Genet. 48, 768-776.
    Wang, Y., Waters, J., Leung, M.L., Unruh, A., Roh, W., Shi, X., Chen, K., Scheet, P., Vattathil, S., Liang, H., et al., 2014. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155-160.
    Watkins, T.B.K., Lim, E.L., Petkovic, M., Elizalde, S., Birkbak, N.J., Wilson, G.A., Moore, D.A., Gronroos, E., Rowan, A., Dewhurst, S.M., et al., 2020. Pervasive chromosomal instability and karyotype order in tumour evolution. Nature 587, 126-132.
    Werner, B., Case, J., Williams, M.J., Chkhaidze, K., Temko, D., Fernandez-Mateos, J., Cresswell, G.D., Nichol, D., Cross, W., Spiteri, I., et al., 2020. Measuring single cell divisions in human tissues from multi-region sequencing data. Nat. Commun. 11, 1035.
    Wichman, H.A., Badgett, M.R., Scott, L.A., Boulianne, C.M., Bull, J.J., 1999. Different trajectories of parallel evolution during viral adaptation. Science 285, 422-424.
    Williams, M.J., Werner, B., Barnes, C.P., Graham, T.A., Sottoriva, A., 2016. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238-244.
    Wu, C.I., Wang, H.Y., Ling, S., Lu, X., 2016. The ecology and evolution of cancer:the ultra-microevolutionary process. Annu. Rev. Genet. 50, 347-369.
    Yates, L.R., Gerstung, M., Knappskog, S., Desmedt, C., Gundem, G., Van Loo, P., Aas, T., Alexandrov, L.B., Larsimont, D., Davies, H., et al., 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21, 751-759.
    Yates, L.R., Knappskog, S., Wedge, D., Farmery, J.H.R., Gonzalez, S., Martincorena, I., Alexandrov, L.B., Van Loo, P., Haugland, H.K., Lilleng, P.K., et al., 2017. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169-184. e167.
    Zhai, W., Lim, T.K., Zhang, T., Phang, S.T., Tiang, Z., Guan, P., Ng, M.H., Lim, J.Q., Yao, F., Li, Z., et al., 2017. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma. Nat. Commun. 8, 4565.
    Zhang, J., Fujimoto, J., Zhang, J., Wedge, D.C., Song, X., Zhang, J., Seth, S., Chow, C.W., Cao, Y., Gumbs, C., et al., 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346, 256-259.
    Zhao, Z., Goldin, L., Liu, S., Wu, L., Zhou, W., Lou, H., Yu, Q., Tsang, S.X., Jiang, M., Li, F., et al., 2016. Evolution of multiple cell clones over a 29-year period of a CLL patient. Nat. Commun. 7, 13765.
  • Relative Articles

    [1]Vijay Kumar Ulaganathan, Martina H. Vasileva. A strategy for uncovering germline variants altering anti-tumor CD8 T cell response[J]. Journal of Genetics and Genomics, 2023, 50(5): 353-361. doi: 10.1016/j.jgg.2023.01.001
    [2]Panwen Tian, Xiaoyan Zhang, Sheng Yang, Yu Fang, Hongling Yuan, Wei Li, Honglin Zhu, Fangping Zhao, Jinlei Ding, Yunshu Zhu, Sizhen Wang, Guochen Sun, Hongbin Ni, Tonghui Ma, Ting Lei. Characteristics of TP53 germline variants and their correlations with Li-Fraumeni syndrome or Li-Fraumeni-like syndrome in Chinese tumor patients[J]. Journal of Genetics and Genomics, 2022, 49(7): 645-653. doi: 10.1016/j.jgg.2021.12.012
    [3]Sijia Lu, Yibing Wang, Junli Liu. Tumor necrosis factor-α signaling in nonalcoholic steatohepatitis and targeted therapies[J]. Journal of Genetics and Genomics, 2022, 49(4): 269-278. doi: 10.1016/j.jgg.2021.09.009
    [4]Xiuyun Xu, Gan Xiong, Ming Zhang, Jiaxiang Xie, Shuang Chen, Kang Li, Jingting Li, Yong Bao, Cheng Wang, Demeng Chen. Sox9+ cells are required for salivary gland regeneration after radiation damage via the Wnt/β-catenin pathway[J]. Journal of Genetics and Genomics, 2022, 49(3): 230-239. doi: 10.1016/j.jgg.2021.09.008
    [5]Maxwell Shulman, Rachel Shi, Qing Zhang. Von Hippel-Lindau tumor suppressor pathways & corresponding therapeutics in kidney cancer[J]. Journal of Genetics and Genomics, 2021, 48(7): 552-559. doi: 10.1016/j.jgg.2021.05.016
    [6]Yixuan Huang, Peng Zhang. Transcriptomic profiling of tumor microenvironment reveals distinct immune subgroups of metastatic melanoma and its potential implications for immunotherapy[J]. Journal of Genetics and Genomics, 2021, 48(5): 426-428. doi: 10.1016/j.jgg.2021.03.008
    [7]Hong Xue, Zhenggang Wu, Xi Long, Ata Ullah, Si Chen, Wai-Kin Mat, Peng Sun, Ming-Zhou Gao, Jie-Qiong Wang, Hai-Jun Wang, Xia Li, Wen-Jun Sun, Ming-Qi Qiao. Copy number variation profile-based genomic typing of premenstrual dysphoric disorder in Chinese[J]. Journal of Genetics and Genomics, 2021, 48(12): 1070-1080. doi: 10.1016/j.jgg.2021.08.012
    [8]Sirvan Khalighi, Salendra Singh, Vinay Varadan. Untangling a complex web: Computational analyses of tumor molecular profiles to decode driver mechanisms[J]. Journal of Genetics and Genomics, 2020, 47(10): 595-609. doi: 10.1016/j.jgg.2020.11.001
    [9]Qian Zhao, Jiawei Guan, Xia Wang. Intestinal stem cells and intestinal organoids[J]. Journal of Genetics and Genomics, 2020, 47(6): 289-299. doi: 10.1016/j.jgg.2020.06.005
    [10]Ling Lu, Junqin Bi, Liming Bao. Genetic profiling of cancer with circulating tumor DNA analysis[J]. Journal of Genetics and Genomics, 2018, 45(2): 79-85. doi: 10.1016/j.jgg.2017.11.006
    [11]Wei Xie, Yunfan Yang, Siqi Gao, Ting Song, Yuhan Wu, Dengwen Li, Min Liu, Jun Zhou. The tumor suppressor CYLD controls epithelial morphogenesis and homeostasis by regulating mitotic spindle behavior and adherens junction assembly[J]. Journal of Genetics and Genomics, 2017, 44(7): 343-353. doi: 10.1016/j.jgg.2017.06.002
    [12]Tatsuo Kido, Yun-Fai Chris Lau. Identification of a TSPY co-expression network associated with DNA hypomethylation and tumor gene expression in somatic cancers[J]. Journal of Genetics and Genomics, 2016, 43(10): 577-585. doi: 10.1016/j.jgg.2016.09.003
    [13]Xufang Deng, Jianchao Wei, Zixue Shi, Wenjun Yan, Zhuanchang Wu, Donghua Shao, Beibei Li, Ke Liu, Xiaodu Wang, Yafeng Qiu, Zhiyong Ma. Tumor suppressor p53 functions as an essential antiviral molecule against Japanese encephalitis virus[J]. Journal of Genetics and Genomics, 2016, 43(12): 709-712. doi: 10.1016/j.jgg.2016.07.002
    [14]Masato Enomoto, Tatsushi Igaki. Deciphering tumor-suppressor signaling in flies: Genetic link between Scribble/Dlg/Lgl and the Hippo pathways[J]. Journal of Genetics and Genomics, 2011, 38(10): 461-470. doi: 10.1016/j.jgg.2011.09.005
    [15]Xiaoman Wo, Dong Han, Haiming Sun, Yang Liu, Xiangning Meng, Jing Bai, Feng Chen, Yang Yu, Yan Jin, Songbin Fu. MDM2 SNP309 contributes to tumor susceptibility: A meta-analysis[J]. Journal of Genetics and Genomics, 2011, 38(8): 341-350. doi: 10.1016/j.jgg.2011.07.005
    [16]Rhoda K.A. Stefanatos, Marcos Vidal. Tumor invasion and metastasis in Drosophila: A bold past, a bright future[J]. Journal of Genetics and Genomics, 2011, 38(10): 431-438. doi: 10.1016/j.jgg.2011.09.004
    [17]Mengxin Yin, Lei Zhang. Hippo signaling: A hub of growth control, tumor suppression and pluripotency maintenance[J]. Journal of Genetics and Genomics, 2011, 38(10): 471-481. doi: 10.1016/j.jgg.2011.09.009
    [18]Xian-Zong Ye, Shi-Cang Yu, Xiu-Wu Bian. Contribution of myeloid-derived suppressor cells to tumor-induced immune suppression, angiogenesis, invasion and metastasis[J]. Journal of Genetics and Genomics, 2010, 37(7): 423-430. doi: 10.1016/S1673-8527(09)60061-8
    [19]Tian Li, Hui Huang, Binlu Huang, Baiqu Huang, Jun Lu. Histone acetyltransferase p300 regulates the expression of human pituitary tumor transforming gene (hPTTG)[J]. Journal of Genetics and Genomics, 2009, 36(6): 335-342. doi: 10.1016/S1673-8527(08)60122-8
    [20]Fangli Liu, Yu Li, Yang Yu, Songbin Fu, Pu Li. Cloning of Novel Tumor Metastasis-Related Genes from the Highly Metastatic Human Lung Adenocarcinoma Cell Line Anip973[J]. Journal of Genetics and Genomics, 2007, 34(3): 189-195. doi: 10.1016/S1673-8527(07)60020-4
  • Cited by

    Periodical cited type(7)

    1. Lu, B., Curtius, K., Graham, T.A. et al. CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples. Genome Biology, 2023, 24(1): 144. doi:10.1186/s13059-023-02983-0
    2. Xie, X., Li, X., Song, W. Tumor organoid biobank-new platform for medical research. Scientific Reports, 2023, 13(1): 1819. doi:10.1038/s41598-023-29065-2
    3. Niu, Y., Kang, H., Wang, P. et al. WHY INCREASE OF HETEROGENEITY SIGNALS PRE-DETERIORATION DURING TUMOR PROGRESSION: A UNIFIED MATHEMATICAL MODEL. SIAM Journal on Applied Mathematics, 2023, 83(2): 791-815. doi:10.1137/22M1497729
    4. Xu, R., Chen, R., Tu, C. et al. 3D Models of Sarcomas: The Next-generation Tool for Personalized Medicine. 2023. doi:10.1007/s43657-023-00111-3
    5. Proietto, M., Crippa, M., Damiani, C. et al. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Frontiers in Oncology, 2023. doi:10.3389/fonc.2023.1164535
    6. Guan, X., Huang, S. Advances in the application of 3D tumor models in precision oncology and drug screening. Frontiers in Bioengineering and Biotechnology, 2022. doi:10.3389/fbioe.2022.1021966
    7. van den Bosch, T., Vermeulen, L., Miedema, D.M. Quantitative models for the inference of intratumor heterogeneity. Computational and Systems Oncology, 2022, 2(2): e1034. doi:10.1002/cso2.1034

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-0502.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.0 %FULLTEXT: 27.0 %META: 66.7 %META: 66.7 %PDF: 6.3 %PDF: 6.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 0.6 %其他: 0.6 %China: 39.3 %China: 39.3 %India: 3.0 %India: 3.0 %Korea Republic of: 0.9 %Korea Republic of: 0.9 %Other: 1.8 %Other: 1.8 %Reserved: 1.8 %Reserved: 1.8 %Russian Federation: 6.3 %Russian Federation: 6.3 %Taiwan, China: 0.9 %Taiwan, China: 0.9 %United States: 45.3 %United States: 45.3 %其他ChinaIndiaKorea Republic ofOtherReservedRussian FederationTaiwan, ChinaUnited States

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (221) PDF downloads (21) Cited by (7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return