5.9
CiteScore
5.9
Impact Factor
Volume 49 Issue 8
Aug.  2022

Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae

doi: 10.1016/j.jgg.2022.06.006
Funds:

D Program of China (2021YFA1300701) to J.M.Z., the National Natural Science Foundation of China (31872654) to Z.Y.Z., and the Hainan Excellent Talent Team, and the State Key Laboratory of Plant Genomics (SKLPG2016B-2) to J.M.Z.

We thank Yuxin Hu for the sze1 sze2 mutant and Brian Staskawicz for the Nbzar1 mutant. We thank Qi-Jun Chen for providing the CRISPR/Cas9 vectors. The work was supported by grants from the National Key R&

  • Received Date: 2022-05-13
  • Accepted Date: 2022-06-15
  • Rev Recd Date: 2022-06-06
  • Publish Date: 2022-06-24
  • Pseudomonas syringae pv. actinidiae (Psa) causes bacterial canker, a devastating disease threatening the Actinidia fruit industry. In a search for non-host resistance genes against Psa, we find that the nucleotide-binding leucine-rich repeat receptor (NLR) protein ZAR1 from both Arabidopsis and Nicotiana benthamiana (Nb) recognizes HopZ5 and triggers cell death. The recognition requires ZED1 in Arabidopsis and JIM2 in Nb plants, which are members of the ZRK pseudokinases and known components of the ZAR1 resistosome. Surprisingly, Arabidopsis ZAR1 and RPM1, another NLR known to recognize HopZ5, confer disease resistance to HopZ5 in a strain-specific manner. Thus, ZAR1, but not RPM1, is solely required for resistance to P.s. maculicola ES4326 (Psm) carrying hopZ5, whereas RPM1 is primarily required for resistance to P.s. tomato DC3000 (Pst) carrying hopZ5. Furthermore, the ZAR1-mediated resistance to Psm hopZ5 in Arabidopsis is insensitive to SOBER1, which encodes a deacetylase known to suppress the RPM1-mediated resistance to Pst hopZ5. In addition, hopZ5 enhances P.syringae virulence in the absence of ZAR1 or RPM1 and that SOBER1 abolishes such virulence function. Together the study suggests that ZAR1 may be used for improving Psa resistance in Actinidia and uncovers previously unknown complexity of effector-triggered immunity and effector-triggered virulence.
  • Adachi, H., Sakai, T., Kourelis, J., Pai, H., Gonzalez Hernandez, J.L., Maqbool, A., Kamoun, S. (2022). Jurassic NLR:conserved and dynamic evolutionary features of the atypically ancient immune receptor ZAR1. bioRxiv 2020.10.12.333484
    Axtell, M.J., and Staskawicz, B.J. (2003). Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 112, 369-377
    Bi, G., Su, M., Li, N., Liang, Y., Dang, S., Xu, J., Hu, M., Wang, J., Zou, M., Deng, Y., et al., (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184, 3528-3541
    Bisgrove, S.R., Simonich, M.T., Smith, N.M., Sattler, A., Innes, R.W. (1994). A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6, 927-933
    Burger, M., Willige, B.C., Chory, J. (2017). A hydrophobic anchor mechanism defines a deacetylase family that suppresses host response against YopJ effectors. Nature Commun. 8, 2201
    Butler, M.I., Stockwell, P.A., Black, M.A., Day, R.C., Lamont, I.L., Poulter, R.T. (2013). Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PloS One 8, e57464
    Choi, S., Jayaraman, J., Sohn, K.H. (2018). Arabidopsis thaliana SOBER1 (SUPPRESSOR OF AVRBST-ELICITED RESISTANCE 1) suppresses plant immunity triggered by multiple bacterial acetyltransferase effectors. New Phytol. 219, 324-335
    Choi, S., Prokchorchik, M., Lee, H., Gupta, R., Lee, Y., Chung, E.H., Cho, B., Kim, M.S., Kim, S.T., Sohn, K.H. (2021). Direct acetylation of a conserved threonine of RIN4 by the bacterial effector HopZ5 or AvrBsT activates RPM1-dependent immunity in Arabidopsis. Mol. Plant 14, 1951-1960
    Cui, H., Tsuda, K., Parker, J.E. (2015). Effector-triggered immunity:from pathogen perception to robust defense. Annu. Rev. Plant Boil. 66, 487-511
    Dou, D., Zhou, J.M. (2012). Phytopathogen effectors subverting host immunity:different foes, similar battleground. Cell Host Microbe, 12, 484-495
    Duxbury, Z., Wu, C.H., Ding, P. (2021). A comparative overview of the intracellular guardians of plants and animals:NLRs in innate immunity and beyond. Annu. Rev. Plant Biol. 72, 155-184
    Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276
    Gomez-Gomez, L., Boller, T. (2000). FLS2:an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003-1011
    Gong, Z., Qi, J., Hu, M., Bi, G., Zhou, J.M., Han, G.Z. (2022). The origin and evolution of a plant resistosome. Plant Cell 34, 1600-1620
    He, P., Shan, L., Sheen, J. (2007). The use of protoplasts to study innate immune responses. Methods Mol. Biol. 354, 1-9
    Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q., Vinh, L.S. (2018). UFBoot2:improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518-522
    Horsefield, S., Burdett, H., Zhang, X., Manik, M.K., Shi, Y., Chen, J., Qi, T., Gilley, J., Lai, J.S., Rank, M. X., et al., (2019). NAD+ cleavage activity by animal and plant TIR domains in cell death pathways. Science 365, 793-799
    Hu, M., Qi, J., Bi, G., Zhou, J.M. (2020). Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo. Mol. Plant 13, 793-801
    Jacob, P., Kim, N.H., Wu, F., El-Kasmi, F., Chi, Y., Walton, W.G., Furzer, O.J., Lietzan, A.D., Sunil, S., Kempthorn, K., et al., (2021). Plant "helper" immune receptors are Ca2+-permeable nonselective cation channels. Science 373, 420-425
    Jayaraman, J., Choi, S., Prokchorchik, M., Choi, D. S., Spiandore, A., Rikkerink, E.H., Templeton, M.D., Segonzac, C., Sohn, K.H. (2017). A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci. Rep. 7, 3557
    Jayaraman, J., Yoon, M., Applegate, E.R., Stroud, E.A., Templeton, M.D. (2020). AvrE1 and HopR1 from Pseudomonas syringae pv. actinidiae are additively required for full virulence on kiwifruit. Mol. Plant Pathol. 21, 1467-1480
    Jubic, L.M., Saile, S., Furzer, O.J., El Kasmi, F., Dangl, J.L. (2019). Help wanted:helper NLRs and plant immune responses. Curr. Opin. Plant Biol. 50, 82-94
    Katoh, K., Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7:improvements in performance and usability. Mol. Biol. Evol. 30, 772-780
    Kirik, A., Mudgett, M.B. (2009). SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc. Natl. Acad. Sci. USA 106, 20532-20537
    Kourelis, J., and van der Hoorn, R. (2018). Defended to the nines:25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30, 285-299
    Laflamme, B., Dillon, M.M., Martel, A., Almeida, R., Desveaux, D., Guttman, D.S. (2020). The pan-genome effector-triggered immunity landscape of a host-pathogen interaction. Science 367, 763-768
    Lapin, D., Bhandari, D.D., Parker, J.E. (2020). Origins and immunity networking functions of EDS1 family proteins. Annu. Rev. Phytopathol. 58, 253-276
    Lewis, J.D., Abada, W., Ma, W., Guttman, D.S., Desveaux, D. (2008). The HopZ family of Pseudomonas syringae type III effectors require myristoylation for virulence and avirulence functions in Arabidopsis thaliana. J. Bacteriol. 190, 2880-2891
    Lewis, J.D., Lee, A.H., Hassan, J.A., Wan, J., Hurley, B., Jhingree, J.R., Wang, P.W., Lo, T., Youn, J.Y., Guttman, D.S., et al., (2013). The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proc. Natl. Acad. Sci. USA 110, 18722-18727
    Lewis, J.D., Lee, A., Ma, W., Zhou, H., Guttman, D.S., Desveaux, D. (2011). The YopJ superfamily in plant-associated bacteria. Mol. Plant Pathol. 12, 928-937
    Li, L., Habring, A., Wang, K., Weigel, D. (2020). Atypical resistance protein RPW8/HR triggers oligomerization of the NLR immune receptor RPP7 and autoimmunity. Cell Host Microbe 27, 405-417. e6
    Liu, C., Cui, D., Zhao, J., Liu, N., Wang, B., Liu, J., Xu, E., Hu, Z., Ren, D., Tang, D., et al., (2019). Two Arabidopsis receptor-like cytoplasmic kinases SZE1 and SZE2 associate with the ZAR1-ZED1 complex and are required for effector-triggered immunity. Mol. Plant 12, 967-983
    Ma, S., Lapin, D., Liu, L., Sun, Y., Song, W., Zhang, X., Logemann, E., Yu, D., Wang, J., Jirschitzka, J., et al., (2020). Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370, eabe3069
    Macho, A.P., Zumaquero, A., Ortiz-Martin, I., Beuzon, C.R. (2007). Competitive index in mixed infections:a sensitive and accurate assay for the genetic analysis of Pseudomonas syringae-plant interactions. Mol. Plant Pathol. 8, 437-450
    Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389
    Mackey, D., Holt, B.F., 3rd, Wiig, A., Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743-754
    Martel, A., Laflamme, B., Seto, D., Bastedo, D.P., Dillon, M.M., Almeida, R., Guttman, D.S., Desveaux, D. (2020). Immunodiversity of the Arabidopsis ZAR1 NLR is conveyed by receptor-like cytoplasmic kinase sensors. Front. Plant Sci. 11, 1290
    Martin, R., Qi, T., Zhang, H., Liu, F., King, M., Toth, C., Nogales, E., Staskawicz, B.J. (2020). Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science 370, eabd9993
    McCann, H.C., Rikkerink, E.H., Bertels, F., Fiers, M., Lu, A., Rees-George, J., Andersen, M. T., Gleave, A.P., Haubold, B., Wohlers, M. W., et al., (2013). Genomic analysis of the Kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog. 9, e1003503
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A., Minh, B.Q. 2015. IQ-TREE:a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268-274
    Pilkington, S.M., Crowhurst, R., Hilario, E., Nardozza, S., Fraser, L., Peng, Y., Gunaseelan, K., Simpson, R., Tahir, J., Deroles, S.C., et al., (2018). A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics 19, 257
    Price, M.N., Dehal, P.S., Arkin, A.P. (2010). FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490
    Reuber, T.L., Ausubel, F.M. (1996). Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. Plant Cell 8:241-249
    Schultink, A., Qi, T., Bally, J., Staskawicz, B.J. (2019). Using forward genetics in Nicotiana benthamiana to uncover the immune signaling pathway mediating recognition of the Xanthomonas perforans effector XopJ4. New Phytol. 221, 1001-1009
    Seto, D., Koulena, N., Lo, T., Menna, A., Guttman, D.S., Desveaux, D. (2017). Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nat. Plants 3, 17027
    Tang, W., Sun, X., Yue, J., Tang, X., Jiao, C., Yang, Y., Niu, X., Miao, M., Zhang, D., Huang, S., et al., (2019) Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping. GigaScience 8, giz027
    Wan, L., Essuman, K., Anderson, R. G., Sasaki, Y., Monteiro, F., Chung, E.H., Nishimura, E.O., DiAntonio, A., Milbrandt, J., Dangl, J. L., et al., (2019). TIR domains of plant immune receptors are NAD+-cleaving enzymes that promote cell death. Science 365, 799-803
    Wang, G., Roux, B., Feng, F., Guy, E., Li, L., Li, N., Zhang, X., Lautier, M., Jardinaud, M.F., Chabannes, M., et al., (2015a). The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18, 285-295
    Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G., Qi, Y., Wang, H. W., Zhou, J.M., Chai, J. (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364, eaav5870
    Wang, Z. P., Xing, H. L., Dong, L., Zhang, H. Y., Han, C. Y., Wang, X. C., Chen, Q. J. (2015b). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol. 16, 144
    Wei, H. L., Zhang, W., Collmer, A. (2018). Modular study of the type III effector repertoire in Pseudomonas syringae pv. tomato DC3000 reveals a matrix of effector interplay in pathogenesis. Cell Rep. 23, 1630-1638
    Wu, H., Ma, T., Kang, M., Ai, F., Zhang, J., Dong, G., Liu, J. (2019). A high-quality Actinidia chinensis (kiwifruit) genome. Hort. Res. 6, 117
    Zhou, H., Morgan, R. L., Guttman, D. S., Ma, W. (2009). Allelic variants of the Pseudomonas syringae type III effector HopZ1 are differentially recognized by plant resistance systems. Mol. Plant Microbe Interact. 22, 176-189
  • Relative Articles

    [1]Yan Yan, Xiao-Ming Li, Yun Chen, Tian-Tian Wu, Ci-Hang Ding, Mei-Qi Zhang, YueTing Guo, Chu-Yang Wang, Junli Zhang, Xuebin Zhang, Awais Rasheed, Shengchun Xu, Meng-Lu Wang, Zhongfu Ni, Qixin Sun, Jin-Ying Gou. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.08.009
    [2]Kunpeng Liu, Xiaogao Jin, Xiaoying Zhang, Hongkai Lian, Jianping Ye. The mechanisms of nucleotide actions in insulin resistance[J]. Journal of Genetics and Genomics, 2022, 49(4): 299-307. doi: 10.1016/j.jgg.2022.01.006
    [3]Xiaoyang Wang, Huicong Meng, Yuxi Tang, Yashi Zhang, Yunxia He, Jinggeng Zhou, Xiangzong Meng. Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen-induced ethylene biosynthesis in Arabidopsis[J]. Journal of Genetics and Genomics, 2022, 49(8): 810-822. doi: 10.1016/j.jgg.2022.04.012
    [4]Xuerui Lu, Shixi Shi, Chong Wu, Xueao Zheng, Chenkun Yang, Jie Luo, Shunping Yan. The shikimate pathway regulates programmed cell death[J]. Journal of Genetics and Genomics, 2022, 49(10): 943-951. doi: 10.1016/j.jgg.2022.02.001
    [5]Yang Chen, Peng Zhang, Jinling Liao, Jiwen Cheng, Qin Zhang, Tianyu Li, Haiying Zhang, Yonghua Jiang, Fangxing Zhang, Yanyu Zeng, Linjian Mo, Haibiao Yan, Deyun Liu, Qinyun Zhang, Chunlin Zou, Gong-Hong Wei, Zengnan Mo. Single-cell transcriptomics reveals cell type diversity of human prostate[J]. Journal of Genetics and Genomics, 2022, 49(11): 1002-1015. doi: 10.1016/j.jgg.2022.03.009
    [6]Yan Zhao, Xiaobo Zhu, Xuewei Chen, Jian-Min Zhou. From plant immunity to crop disease resistance[J]. Journal of Genetics and Genomics, 2022, 49(8): 693-703. doi: 10.1016/j.jgg.2022.06.003
    [7]Ziyu Wang, Jun Wang. Innate lymphoid cells and gastrointestinal disease[J]. Journal of Genetics and Genomics, 2021, 48(9): 763-770. doi: 10.1016/j.jgg.2021.08.004
    [8]Jinhua Xiao, Xianqin Wei, Yi Zhou, Zhaozhe Xin, Yunheng Miao, Hongxia Hou, Jiaxing Li, Dan Zhao, Jing Liu, Rui Chen, Liming Niu, Guangchang Ma, Wenquan Zhen, Shunmin He, Jianxia Wang, Xunfan Wei, Weihao Dou, Zhuoxiao Sui, Haikuan Zhang, Shilai Xing, Miao Shi, Dawei Huang. Genomes of 12 fig wasps provide insights into the adaptation of pollinators to fig syconia[J]. Journal of Genetics and Genomics, 2021, 48(3): 225-236. doi: 10.1016/j.jgg.2021.02.010
    [9]Shitou Xia, Xueru Liu, Yuelin Zhang. Calcium channels at the center of nucleotide-binding leucine-rich repeat receptor-mediated plant immunity[J]. Journal of Genetics and Genomics, 2021, 48(6): 429-432. doi: 10.1016/j.jgg.2021.06.003
    [10]Jiying Zhao, Pengcheng Liu, Chunrong Li, Yanyan Wang, Lequn Guo, Guanghuai Jiang, Wenxue Zhai. LMM5.1 and LMM5.4, two eukaryotic translation elongation factor 1A-like gene family members, negatively affect cell death and disease resistance in rice[J]. Journal of Genetics and Genomics, 2017, 44(2): 107-118. doi: 10.1016/j.jgg.2016.12.005
    [11]Baoheng Gui, Pu Yang, Zhongyuan Yao, Yanping Li, Donge Liu, Nenghui Liu, Sijia Lu, Desheng Liang, Lingqian Wu. A New Next-Generation Sequencing-Based Assay for Concurrent Preimplantation Genetic Diagnosis of Charcot-Marie-Tooth Disease Type 1A and Aneuploidy Screening[J]. Journal of Genetics and Genomics, 2016, 43(3): 155-159. doi: 10.1016/j.jgg.2016.01.003
    [12]Ying-Tao Zhao, Meng Wang, Zhi-Min Wang, Rong-Xiang Fang, Xiu-Jie Wang, Yan-Tao Jia. Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae[J]. Journal of Genetics and Genomics, 2015, 42(11): 625-637. doi: 10.1016/j.jgg.2015.08.001
    [13]Wei Ling Florence Lim, Ian James Martins, Ralph Nigel Martins. The Involvement of Lipids in Alzheimer's Disease[J]. Journal of Genetics and Genomics, 2014, 41(5): 261-274. doi: 10.1016/j.jgg.2014.04.003
    [14]Rahul Mittal, Giannina Robalino, Robert Gerring, Brandon Chan, Denise Yan, M'hamed Grati, Xue-Zhong Liu. Immunity Genes and Susceptibility to Otitis Media: A Comprehensive Review[J]. Journal of Genetics and Genomics, 2014, 41(11): 567-581. doi: 10.1016/j.jgg.2014.10.003
    [15]Zhihui Yuan, Li Wang, Shutao Sun, Yao Wu, Wei Qian. Genetic and Proteomic Analyses of a Xanthomonas campestris pv. campestris purC Mutant Deficient in Purine Biosynthesis and Virulence[J]. Journal of Genetics and Genomics, 2013, 40(9): 473-487. doi: 10.1016/j.jgg.2013.05.003
    [16]Haozhen Nie, Yingying Wu, Chunpeng Yao, Dingzhong Tang. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis[J]. Journal of Genetics and Genomics, 2011, 38(4): 137-148. doi: 10.1016/j.jgg.2011.03.001
    [17]Yuchun Rao, Guojun Dong, Dali Zeng, Jiang Hu, Longjun Zeng, Zhengyu Gao, Guanghen Zhang, Longbiao Guo, Qian Qian. Genetic analysis of leaffolder resistance in rice[J]. Journal of Genetics and Genomics, 2010, 37(5): 325-331. doi: 10.1016/S1673-8527(09)60050-3
    [18]Wuyun Yang, Dengcai Liu, Jun Li, Lianquan Zhang, Huiting Wei, Xiaorong Hu, Youliang Zheng, Zhouhu He, Yuchun Zou. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China[J]. Journal of Genetics and Genomics, 2009, 36(9): 539-546. doi: 10.1016/S1673-8527(08)60145-9
    [19]Jinling Liu, Xionglun Liu, Liangying Dai, Guoliang Wang. Recent Progress in Elucidating the Structure, Function and Evolution of Disease Resistance Genes in Plants[J]. Journal of Genetics and Genomics, 2007, 34(9): 765-776. doi: 10.1016/S1673-8527(07)60087-3
    [20]Pengya Xue, Ling Zhang, Renchun Fan, Yanan Li, Xinyun Han, Ting Qi, Lifang Zhao, Deshui Yu, Qian-Hua Shen. HvMPK4 phosphorylates HvWRKY1 to enhance its suppression of barley immunity to powdery mildew fungus[J]. Journal of Genetics and Genomics. doi: 10.1016/j.jgg.2023.05.005
  • Cited by

    Periodical cited type(15)

    1. An, Y., Lu, J., Zhang, S. et al. New insights into CNL-mediated immunity through recognition of Ralstonia solanacearum RipP1 by NbZAR1. Journal of Integrative Plant Biology, 2025. doi:10.1111/jipb.13855
    2. Zhang, M., Sun, L., Fu, R. et al. Research advances on reisistance to kiwifruit bacterial canker | [猕猴桃抗细菌性溃疡病研究进展]. Journal of Fruit Science, 2025, 42(1): 196-206. doi:10.13925/j.cnki.gsxb.20240520
    3. Miao, P., Zhou, J.-M., Wang, W. A self-assembling split Nano luciferase-based assay for investigating Pseudomonas syringae effector secretion. Stress Biology, 2024, 4(1): 14. doi:10.1007/s44154-024-00152-2
    4. Liu, Q., Qiao, A., Zhou, S. et al. Identification of the HbZAR1 Gene and Its Potential Role as a Minor Gene in Response to Powdery Mildew and Anthracnose of Hevea brasiliensis. Forests, 2024, 15(11): 1891. doi:10.3390/f15111891
    5. Yeh, S.-M., Yoon, M., Scott, S. et al. NbPTR1 confers resistance against Pseudomonas syringae pv. actinidiae in kiwifruit. Plant Cell and Environment, 2024, 47(11): 4101-4115. doi:10.1111/pce.15002
    6. Zhou, M., Zhang, J., Zhao, Z. et al. Pseudomonas syringae pv. actinidiae Unique Effector HopZ5 Interacts with GF14C to Trigger Plant Immunity. Phytopathology, 2024, 114(10): 2322-2330. doi:10.1094/PHYTO-09-23-0330-R
    7. Vlková-Žlebková, M., Yuen, F.W., McCann, H.C. Evolving Archetypes: Learning from Pathogen Emergence on a Nonmodel Host. Annual Review of Phytopathology, 2024, 62(1): 49-68. doi:10.1146/annurev-phyto-021622-095110
    8. Diplock, N., Baudin, M., Xiang, X. et al. Molecular dissection of the pseudokinase ZED1 expands effector recognition to the tomato immune receptor ZAR1. Plant Physiology, 2024, 196(1): 651-666. doi:10.1093/plphys/kiae268
    9. Li, L., Liu, J., Zhou, J.-M. From molecule to cell: the expanding frontiers of plant immunity. Journal of Genetics and Genomics, 2024, 51(7): 680-690. doi:10.1016/j.jgg.2024.02.005
    10. Yang, S., Cai, W., Wu, R. et al. Differential CaKAN3-CaHSF8 associations underlie distinct immune and heat responses under high temperature and high humidity conditions. Nature Communications, 2023, 14(1): 4477. doi:10.1038/s41467-023-40251-8
    11. Ahn, Y.J., Kim, H., Choi, S. et al. Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. New Phytologist, 2023, 239(5): 1935-1953. doi:10.1111/nph.19073
    12. Zou, S., Li, X., Huang, Y. et al. Properties and biotechnological applications of microbial deacetylase. Applied Microbiology and Biotechnology, 2023, 107(15): 4697-4716. doi:10.1007/s00253-023-12613-1
    13. Kim, H., Ahn, Y.J., Lee, H. et al. Diversified host target families mediate convergently evolved effector recognition across plant species. Current Opinion in Plant Biology, 2023, 74: 102398. doi:10.1016/j.pbi.2023.102398
    14. Diplock, N., Baudin, M., Harden, L. et al. Utilising natural diversity of kinases to rationally engineer interactions with the angiosperm immune receptor ZAR1. Plant Cell and Environment, 2023, 46(7): 2238-2254. doi:10.1111/pce.14603
    15. Zhang, H., Chen, H., Tan, J. et al. The chromosome-scale reference genome and transcriptome analysis of Solanum torvum provides insights into resistance to root-knot nematodes. Frontiers in Plant Science, 2023, 14: 1210513. doi:10.3389/fpls.2023.1210513

    Other cited types(0)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads (30) Cited by (15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return