9.9
CiteScore
7.1
Impact Factor
Volume 51 Issue 2
Feb.  2024
Turn off MathJax
Article Contents

Rare loss-of-function variants in FLNB cause non-syndromic orofacial clefts

doi: 10.1016/j.jgg.2023.03.012
Funds:

The authors would like to thank all the participants involved in this study. This work is a part of a series of studies focusing on orofacial clefts under the supervision of Prof. Jiuxiang Lin. This work was supported by the National Natural Science Foundation of China (No. 81870747, 82170916, 81900984, and 82001030), the Fundamental Research Funds for the Central Universities (PKU2022XGK001), Natural Science Foundation of Beijing Municipality (7182184), Xi'an “Science and Technology+” Action Plan-Medical Research Project (20YXYJ0010[1]), and the Fundamental Research Funds for the Central Universities (xzy012020110).

  • Received Date: 2022-12-21
  • Accepted Date: 2023-03-17
  • Rev Recd Date: 2023-02-24
  • Publish Date: 2023-03-31
  • Orofacial clefts (OFCs) are the most common congenital craniofacial disorders, of which the etiology is closely related to rare coding variants. Filamin B (FLNB) is an actin-binding protein implicated in bone formation. FLNB mutations have been identified in several types of syndromic OFCs and previous studies suggest a role of FLNB in the onset of non-syndromic OFCs (NSOFCs). Here, we report two rare heterozygous variants (p.P441T and p.G565R) in FLNB in two unrelated hereditary families with NSOFCs. Bioinformatics analysis suggests that both variants may disrupt the function of FLNB. In mammalian cells, p.P441T and p.G565R variants are less potent to induce cell stretches than wild type FLNB, suggesting that they are loss-of-function mutations. Immunohistochemistry analysis demonstrates that FLNB is abundantly expressed during palatal development. Importantly, Flnb−/− embryos display cleft palates and previously defined skeletal defects. Taken together, our findings reveal that FLNB is required for development of palates in mice and FLNB is a bona fide causal gene for NSOFCs in humans.
  • loading
  • Alade, A., Awotoye, W., Butali, A., 2022. Genetic and epigenetic studies in non-syndromic oral clefts. Oral Dis. 28, 1339-1350.
    Chai, G., Szenker-Ravi, E., Chung, C., Li, Z., Wang, L., Khatoo, M., Marshall, T., Jiang, N., Yang, X., McEvoy-Venneri, J., et al., 2021. A human pleiotropic multiorgan condition caused by deficient wnt secretion. N. Engl. J. Med. 385, 1292-1301.
    Chen, Y., Wei, X., Zhang, Z., He, Y., Huo, B., Guo, X., Feng, X., Fang, Z.M., Jiang, D.S., Zhu, X.H., 2021. Downregulation of filamin a expression in the aorta is correlated with aortic dissection. Front. Cardiovasc. Med. 8, 690846.
    Czermak, P., Amman, F., Jantsch, M.F., Cimatti, L., 2018. Organ-wide profiling in mouse reveals high editing levels of Filamin B mRNA in the musculoskeletal system. RNA Biol. 15, 877-885.
    Dabrowska, J., Biedziak, B., Szponar-Zurowska, A., Budner, M., Jagodzinski, P.P., Ploski, R., Mostowska, A., 2022. Identification of novel susceptibility genes for non-syndromic cleft lip with or without cleft palate using NGS-based multigene panel testing. Mol. Genet. Genom. 297, 1315-1327.
    Dalkilic, I., Schienda, J., Thompson, T.G., Kunkel, L.M., 2006. Loss of FilaminC (FLNc) results in severe defects in myogenesis and myotube structure. Mol. Cell Biol. 26, 6522-6534.
    Dixon, M.J., Marazita, M.L., Beaty, T.H., Murray, J.C., 2011. Cleft lip and palate: understanding genetic and environmental influences. Nat. Rev. Genet. 12, 167-178.
    Duff, R.M., Tay, V., Hackman, P., Ravenscroft, G., McLean, C., Kennedy, P., Steinbach, A., Schoffler, W., van der Ven, P.F.M., Furst, D.O., et al., 2011. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am. J. Hum. Genet. 88, 729-740.
    Farrington-Rock, C., Firestein, M.H., Bicknell, L.S., Superti-Furga, A., Bacino, C.A., Cormier-Daire, V., Le Merrer, M., Baumann, C., Roume, J., Rump, P., et al., 2006. Mutations in two regions of FLNB result in atelosteogenesis I and III. Hum. Mutat. 27, 705-710.
    Farrington-Rock, C., Kirilova, V., Dillard-Telm, L., Borowsky, A.D., Chalk, S., Rock, M.J., Cohn, D.H., Krakow, D., 2008. Disruption of the Flnb gene in mice phenocopies the human disease spondylocarpotarsal synostosis syndrome. Hum. Mol. Genet. 17, 631-641.
    Hart, A.W., Morgan, J.E., Schneider, J., West, K., McKie, L., Bhattacharya, S., Jackson, I.J., Cross, S.H., 2006. Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum. Mol. Genet. 15, 2457-2467.
    He, Q., Hao, X., Bao, S., Wu, X., Xu, L., Hou, Y., Huang, Y., Peng, L., Huang, H., Ding, Y., et al., 2022. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. Genomics 114, 110507.
    Hirata, H., Sokabe, M., Lim, C.T., 2014. Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Prog. Mol. Biol. Transl. Sci. 126, 135-154.
    Hu, J., Lu, J., Goyal, A., Wong, T., Lian, G., Zhang, J., Hecht, J.L., Feng, Y., Sheen, V.L., 2017. Opposing FlnA and FlnB interactions regulate RhoA activation in guiding dynamic actin stress fiber formation and cell spreading. Hum. Mol. Genet. 26, 1294-1304.
    Huang, W., He, Q., Li, M., Ding, Y., Liang, W., Li, W., Lin, J., Zhao, H., Chen, F., 2022. Two rare variants reveal the significance of Grainyhead-like 3 Arginine 391 underlying non-syndromic cleft palate only. Oral Dis.
    Jeon, Y.J., Choi, J.S., Lee, J.Y., Yu, K.R., Ka, S.H., Cho, Y., Choi, E.J., Baek, S.H., Seol, J.H., Park, D., et al., 2008. Filamin B serves as a molecular scaffold for type I interferon-induced c-Jun NH2-terminal kinase signaling pathway. Mol. Biol. Cell 19, 5116-5130.
    Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589.
    Mao, Z., Nakamura, F., 2020. Structure and function of filamin C in the muscle Z-disc. Int. J. Mol. Sci. 21.
    Mukhopadhyay, N., Bishop, M., Mortillo, M., Chopra, P., Hetmanski, J.B., Taub, M.A., Moreno, L.M., Valencia-Ramirez, L.C., Restrepo, C., Wehby, G.L., et al., 2020. Whole genome sequencing of orofacial cleft trios from the Gabriella Miller Kids First Pediatric Research Consortium identifies a new locus on chromosome 21. Hum. Genet. 139, 215-226.
    Padmanabhan, A., Delling, F.N., 2021. Genetics of mitral valve disease, in: Wells, F.C., Anderson, R.H. (Eds.), Mitral Valve Disease: Basic Sciences and Current Approaches to Management. Springer International Publishing, Cham, pp. 133-150.
    Peyrard-Janvid, M., Leslie, E.J., Kousa, Y.A., Smith, T.L., Dunnwald, M., Magnusson, M., Lentz, B.A., Unneberg, P., Fransson, I., Koillinen, H.K., et al., 2014. Dominant mutations in GRHL3 cause Van der Woude Syndrome and disrupt oral periderm development. Am. J. Hum. Genet. 94, 23-32.
    Rosa, J.P., Raslova, H., Bryckaert, M., 2019. Filamin A: key actor in platelet biology. Blood 134, 1279-1288.
    Saleem, K., Zaib, T., Sun, W., Fu, S., 2019. Assessment of candidate genes and genetic heterogeneity in human non syndromic orofacial clefts specifically non syndromic cleft lip with or without palate. Heliyon 5, e03019.
    Sheen, V.L., Jansen, A., Chen, M.H., Parrini, E., Morgan, T., Ravenscroft, R., Ganesh, V., Underwood, T., Wiley, J., Leventer, R., et al., 2005. Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome. Neurology 64, 254-262.
    Tian, H., Feng, J., Li, J., Ho, T.V., Yuan, Y., Liu, Y., Brindopke, F., Figueiredo, J.C., Magee, W., 3rd, Sanchez-Lara, P.A., et al., 2017. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum. Mol. Genet. 26, 860-872.
    Tobias, J.D., 1996. Anesthetic implications of Larsen syndrome. J. Clin. Anesth. 8, 255-257.
    Vasung, L., Zhao, C., Barkovich, M., Rollins, C.K., Zhang, J., Lepage, C., Corcoran, T., Velasco-Annis, C., Yun, H.J., Im, K., et al., 2021. Association between quantitative MR markers of cortical evolving organization and gene expression during human prenatal brain development. Cerebr. Cortex 31, 3610-3621.
    Yu, Y., Zuo, X., He, M., Gao, J., Fu, Y., Qin, C., Meng, L., Wang, W., Song, Y., Cheng, Y., et al., 2017. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat. Commun. 8, 14364.
    Zhang, D., Herring, J.A., Swaney, S.S., McClendon, T.B., Gao, X., Browne, R.H., Rathjen, K.E., Johnston, C.E., Harris, S., Cain, N.M., et al., 2006. Mutations responsible for Larsen syndrome cluster in the FLNB protein. J. Med. Genet. 43, e24.
    Zhao, H., Zhong, W., Leng, C., Zhang, J., Zhang, M., Huang, W., Zhang, Y., Li, W., Jia, P., Lin, J., et al., 2018. A novel PTCH1 mutation underlies nonsyndromic cleft lip and/or palate in a Han Chinese family. Oral Dis. 24, 1318-1325.
    Zhou, W.D., Liu, C.H., Yin, X.M., Zeng, Q.Y., 2016. A novel mutation of filamin A gene in a Chinese family with periventricular nodular heterotopia. Chin. Med. J. (Engl) 129, 2262-2263.
    Zhou, X., Tian, F., Sandzen, J., Cao, R., Flaberg, E., Szekely, L., Cao, Y., Ohlsson, C., Bergo, M.O., Boren, J., et al., 2007. Filamin B deficiency in mice results in skeletal malformations and impaired microvascular development. Proc. Natl. Acad. Sci. U.S.A. 104, 3919-3924.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (190) PDF downloads (30) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return