5.9
CiteScore
5.9
Impact Factor
Volume 50 Issue 9
Sep.  2023

VT3D: a visualization toolbox for 3D transcriptomic data

doi: 10.1016/j.jgg.2023.04.001 cstr: 32370.14.j.jgg.2023.04.001
Funds:

We thank Dr. Li Deng, Dr. Hanbo Li, Dr. Xiaoyu Wei, Chao Liu, Chang Shi, and Junfu Guo from the BGI group for the helpful discussion. This work has been supported by the General Program (Key Program, Major Research Plan) of National Natural Science Foundation of China (No. 32170439).

  • Received Date: 2023-01-12
  • Accepted Date: 2023-04-04
  • Rev Recd Date: 2023-04-03
  • Publish Date: 2023-04-11
  • Data visualization empowers researchers to communicate their results that support scientific reasoning in an intuitive way. Three-dimension (3D) spatially resolved transcriptomic atlases constructed from multi-view and high-dimensional data have rapidly emerged as a powerful tool to unravel spatial gene expression patterns and cell type distribution in biological samples, revolutionizing the understanding of gene regulatory interactions and cell niches. However, limited accessible tools for data visualization impede the potential impact and application of this technology. Here we introduce VT3D, a visualization toolbox that allows users to explore 3D transcriptomic data, enabling gene expression projection to any 2D plane of interest, 2D virtual slice creation and visualization, and interactive 3D data browsing with surface model plots. In addition, it can either work on personal devices in standalone mode or be hosted as a web-based server. We apply VT3D to multiple datasets produced by the most popular techniques, including both sequencing-based approaches (Stereo-seq, spatial transcriptomics, and Slide-seq) and imaging-based approaches (MERFISH and STARMap), and successfully build a 3D atlas database that allows interactive data browsing. We demonstrate that VT3D bridges the gap between researchers and spatially resolved transcriptomics, thus accelerating related studies such as embryogenesis and organogenesis processes. The source code of VT3D is available at https://github.com/BGI-Qingdao/VT3D, and the modeled atlas database is available at http://www.bgiocean.com/vt3d_example.
  • [1]
    Asp, M., Giacomello, S., Larsson, L., Wu, C., Furth, D., Qian, X., Wardell, E., Custodio, J., Reimegard, J., Salmen, F., et al., 2019. A spatiotemporal organ-wide gene expression and cell atlas of the developing human heart. Cell 179, 1647-1660.
    [2]
    Burtsev, S.V.,Kuzmin, Y.P., 1993. An efficient flood-filling algorithm. Comput. Graph. 17, 549-561.
    [3]
    Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., et al., 2022a. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. Cell 185, 1777-1792.
    [4]
    Chen, X., Fischer, S., Zhang, A., Gillis, J.,Zador, A.M., 2022b. Modular cell type organization of cortical areas revealed by in situ sequencing. BioRxiv. https://doi.org/10.1101/2022.11.06.515380.
    [5]
    Cho, C.S., Xi, J., Si, Y., Park, S.R., Hsu, J.E., Kim, M., Jun, G., Kang, H.M.,Lee, J.H., 2021. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 184, 3559-3572.
    [6]
    Costa, M., Manton, J.D., Ostrovsky, A.D., Prohaska, S.,Jefferis, G.S., 2016. NBLAST: Rapid, Sensitive Comparison of Neuronal Structure and Construction of Neuron Family Databases. Neuron 91, 293-311.
    [7]
    Dries, R., Zhu, Q., Dong, R., Eng, C.L., Li, H., Liu, K., Fu, Y., Zhao, T., Sarkar, A., Bao, F., et al., 2021. Giotto: a toolbox for integrative analysis and visualization of spatial expression data. Genome Biol. 22, 78.
    [8]
    Fang, S., Chen, B., Zhang, Y., Sun, H., Liu, L., Liu, S., Li, Y.,Xu, X., 2022. Computational approaches and challenges in spatial transcriptomics. Genomics Proteomics Bioinformatics.
    [9]
    Fernandez Navarro, J., Lundeberg, J.,Stahl, P.L., 2019. ST viewer: a tool for analysis and visualization of spatial transcriptomics datasets. Bioinformatics 35, 1058-1060.
    [10]
    Griffith, L.G.,Swartz, M.A., 2006. Capturing complex 3D tissue physiology in vitro. Nat. Rev. Mol. Cell Biol. 7, 211-224.
    [11]
    Han, X., Zhou, Z., Fei, L., Sun, H., Wang, R., Chen, Y., Chen, H., Wang, J., Tang, H., Ge, W., et al., 2020. Construction of a human cell landscape at single-cell level. Nature 581, 303-309.
    [12]
    Ho, J.L., Konda, A., Rahman, J., Harris, E., Korn, R., Sabir, A., Bawany, B., Gulati, R., Harris, G.J., Boswell, W.D., et al., 2020. Comparative analysis of three-dimensional volume rendering and maximum intensity projection for preoperative planning in liver cancer. Eur. J. Radiol. Open 7, 100259.
    [13]
    Law, J., Morris, D.E., Izzi-Engbeaya, C., Salem, V., Coello, C., Robinson, L., Jayasinghe, M., Scott, R., Gunn, R., Rabiner, E., et al., 2018. Thermal Imaging Is a Noninvasive Alternative to PET/CT for Measurement of Brown Adipose Tissue Activity in Humans. J. Nucl. Med. 59, 516-522.
    [14]
    Li, B., Gould, J., Yang, Y., Sarkizova, S., Tabaka, M., Ashenberg, O., Rosen, Y., Slyper, M., Kowalczyk, M.S., Villani, A.C., et al., 2020. Cumulus provides cloud-based data analysis for large-scale single-cell and single-nucleus RNA-seq. Nat. Methods 17, 793-798.
    [15]
    Li, D., Mei, H., Shen, Y., Su, S., Zhang, W., Wang, J., Zu, M.,Chen, W., 2018. ECharts: A declarative framework for rapid construction of web-based visualization. Vis. Inform. 2, 136-146.
    [16]
    Liu, X., Zeira, R.,Raphael, B.J., 2023. PASTE2: Partial Alignment of Multi-slice Spatially Resolved Transcriptomics Data. BioRxiv.
    [17]
    Marshall, J.L., Noel, T., Wang, Q.S., Chen, H., Murray, E., Subramanian, A., Vernon, K.A., Bazua-Valenti, S., Liguori, K., Keller, K., et al., 2022. High-resolution Slide-seqV2 spatial transcriptomics enables discovery of disease-specific cell neighborhoods and pathways. iScience 25, 104097.
    [18]
    Moffitt, J.R., Bambah-Mukku, D., Eichhorn, S.W., Vaughn, E., Shekhar, K., Perez, J.D., Rubinstein, N.D., Hao, J., Regev, A., Dulac, C., et al., 2018. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362.
    [19]
    Moses, L.,Pachter, L., 2022. Museum of spatial transcriptomics. Nat. Methods 19, 534-546.
    [20]
    Nobori, T., Oliva, M., Lister, R.,Ecker, J.R., 2022. PHYTOMap: Multiplexed single-cell 3D spatial gene expression analysis in plant tissue. BioRxiv.
    [21]
    Ortiz, C., Navarro, J.F., Jurek, A., Martin, A., Lundeberg, J.,Meletis, K., 2020. Molecular atlas of the adult mouse brain. Sci. Adv. 6, eabb3446.
    [22]
    Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A.C., Kuemmerle, L.B., Rybakov, S., Ibarra, I.L., Holmberg, O., Virshup, I., et al., 2022. Squidpy: a scalable framework for spatial omics analysis. Nat. Methods 19, 171-178.
    [23]
    Peng, H., Ruan, Z., Long, F., Simpson, J.H.,Myers, E.W., 2010. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348-353.
    [24]
    Pinter, C., Lasso, A.,Fichtinger, G., 2019. Polymorph segmentation representation for medical image computing. Comput. Methods Programs Biomed. 171, 19-26.
    [25]
    Qiu, X., Zhu, D.Y., Yao, J., Jing, Z., Zuo, L., Wang, M., Min, K.H., Pan, H., Wang, S., Liao, S., et al., 2022. Spateo: multidimensional spatiotemporal modeling of single-cell spatial transcriptomics. BioRxiv.
    [26]
    Rodriques, S.G., Stickels, R.R., Goeva, A., Martin, C.A., Murray, E., Vanderburg, C.R., Welch, J., Chen, L.M., Chen, F.,Macosko, E.Z., 2019. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463-1467.
    [27]
    Rozenblatt-Rosen, O., Regev, A., Oberdoerffer, P., Nawy, T., Hupalowska, A., Rood, J.E., Ashenberg, O., Cerami, E., Coffey, R.J., Demir, E., et al., 2020. The Human Tumor Atlas Network: Charting Tumor Transitions across Space and Time at Single-Cell Resolution. Cell 181, 236-249.
    [28]
    Sullivan, C.B.,Kaszynski, A.A., 2019. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK). J. Open Source Softw. 4, 1450.
    [29]
    Sun, D., Liu, Z., Li, T., Wu, Q.,Wang, C., 2022. STRIDE: accurately decomposing and integrating spatial transcriptomics using single-cell RNA sequencing. Nucleic Acids Res. 50, e42.
    [30]
    Wallis, J.W., Miller, T.R., Lerner, C.A.,Kleerup, E.C., 1989. Three-dimensional display in nuclear medicine. IEEE Trans. Med. Imaging 8, 297-230.
    [31]
    Wang, G., Zhao, J., Yan, Y., Wang, Y., Wu, A.R.,Yang, C., 2023. Construction of a 3D whole organism spatial atlas by joint modeling of multiple slices. BioRxiv.
    [32]
    Wang, M., Hu, Q., Lv, T., Wang, Y., Lan, Q., Xiang, R., Tu, Z., Wei, Y., Han, K., Shi, C., et al., 2022. High-resolution 3D spatiotemporal transcriptomic maps of developing Drosophila embryos and larvae. Dev. Cell 57, 1271-1283 e1274.
    [33]
    Wang, X., Allen, W.E., Wright, M.A., Sylwestrak, E.L., Samusik, N., Vesuna, S., Evans, K., Liu, C., Ramakrishnan, C., Liu, J., et al., 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361.
    [34]
    Waylen, L.N., Nim, H.T., Martelotto, L.G.,Ramialison, M., 2020. From whole-mount to single-cell spatial assessment of gene expression in 3D. Commun. Biol. 3, 602.
    [35]
    Wei, R., He, S., Bai, S., Sei, E., Hu, M., Thompson, A., Chen, K., Krishnamurthy, S.,Navin, N.E., 2022. Spatial charting of single-cell transcriptomes in tissues. Nat. Biotechnol. 40, 1190-1199.
    [36]
    Wolf, F.A., Angerer, P.,Theis, F.J., 2018. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15.
    [37]
    Xu, Z., Wang, W., Yang, T., Chen, J., Huang, Y., Gould, J., Du, W., Yang, F., Li, L., Lai, T., et al., 2022. STOmicsDB: a database of Spatial Transcriptomic data. BioRxiv.
    [38]
    Yuan, Z., Pan, W., Zhao, X., Zhao, F., Xu, Z., Li, X., Zhao, Y., Zhang, M.Q.,Yao, J., 2023. SODB facilitates comprehensive exploration of spatial omics data. Nat. Methods 20, 387-399.
    [39]
    Zeira, R., Land, M., Strzalkowski, A.,Raphael, B.J., 2022. Alignment and integration of spatial transcriptomics data. Nat. Methods 19, 567-575.
  • Relative Articles

    [1]Zhaowei Teng, Yun Zhu, Da Lin, Qinggang Hao, Qiaoning Yue, Xiaochao Yu, Shuo Sun, Lihong Jiang, Sheng Lu. Deciphering the chromatin spatial organization landscapes during BMMSC differentiation[J]. Journal of Genetics and Genomics, 2023, 50(4): 264-275. doi: 10.1016/j.jgg.2023.01.009
    [2]Ning Sun, Cheng Wang, Wenqi Lv, Xiaoni Gan, Liandong Yang, Shunping He, Chengchi Fang. 3D landscape reorganization in response to feeding preferences adaptation in the youngest split Gymnocypris fish[J]. Journal of Genetics and Genomics, 2023, 50(4): 289-292. doi: 10.1016/j.jgg.2022.09.003
    [3]Yin Zhang, Juan Shen, Wei Cheng, Bhaskar Roy, Ruizhen Zhao, Tailiang Chai, Yifei Sheng, Zhao Zhang, Xueting Chen, Weiming Liang, Weining Hu, Qijun Liao, Shanshan Pan, Wen Zhuang, Yangrui Zhang, Rouxi Chen, Junpu Mei, Hong Wei, Xiaodong Fang. Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq[J]. Journal of Genetics and Genomics, 2023, 50(9): 688-701. doi: 10.1016/j.jgg.2023.04.012
    [4]Xinbin Tang, Jiayu Chen, Xinya Zhang, Xuzhu Liu, Zhaoxiang Xie, Kaipeng Wei, Jianlong Qiu, Weiyan Ma, Chen Lin, Rongqin Ke. Improved in situ sequencing for high-resolution targeted spatial transcriptomic analysis in tissue sections[J]. Journal of Genetics and Genomics, 2023, 50(9): 652-660. doi: 10.1016/j.jgg.2023.02.004
    [5]Yuying Huo, Yilang Guo, Jiakang Wang, Huijie Xue, Yujuan Feng, Weizheng Chen, Xiangyu Li. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network[J]. Journal of Genetics and Genomics, 2023, 50(9): 720-733. doi: 10.1016/j.jgg.2023.06.005
    [6]Mengnan Cheng, Yujia Jiang, Jiangshan Xu, Alexios-Fotios A. Mentis, Shuai Wang, Huiwen Zheng, Sunil Kumar Sahu, Longqi Liu, Xun Xu. Spatially resolved transcriptomics: a comprehensive review of their technological advances, applications, and challenges[J]. Journal of Genetics and Genomics, 2023, 50(9): 625-640. doi: 10.1016/j.jgg.2023.03.011
    [7]Yanhong Wu, Qifan Hu, Shicheng Wang, Changyi Liu, Yiran Shan, Wenbo Guo, Rui Jiang, Xiaowo Wang, Jin Gu. Highly Regional Genes: graph-based gene selection for single-cell RNA-seq data[J]. Journal of Genetics and Genomics, 2022, 49(9): 891-899. doi: 10.1016/j.jgg.2022.01.004
    [8]Peiwen Ding, Haoyu Wang, Jiacheng Zhu, Fuyu An, Jinqian Xu, Xiangning Ding, Lihua Luo, Weiying Wu, Qiuyu Qin, Yanan Wei, Wandong Zhao, Zhiyuan Lv, Haimeng Li, Yixin Zhu, Meiling Li, Wensheng Zhang, Yanan Zhang, Zhihua Ou, Huan Liu, Yan Hua. Viral receptor profiles of masked palm civet revealed by single-cell transcriptomics[J]. Journal of Genetics and Genomics, 2022, 49(11): 1072-1075. doi: 10.1016/j.jgg.2022.04.009
    [9]Yang Chen, Peng Zhang, Jinling Liao, Jiwen Cheng, Qin Zhang, Tianyu Li, Haiying Zhang, Yonghua Jiang, Fangxing Zhang, Yanyu Zeng, Linjian Mo, Haibiao Yan, Deyun Liu, Qinyun Zhang, Chunlin Zou, Gong-Hong Wei, Zengnan Mo. Single-cell transcriptomics reveals cell type diversity of human prostate[J]. Journal of Genetics and Genomics, 2022, 49(11): 1002-1015. doi: 10.1016/j.jgg.2022.03.009
    [10]Wu Zheng, Zhaoen Yang, Xiaoyang Ge, Yijia Feng, Ye Wang, Chengwei Liu, Yanan Luan, Kun Cai, Serhii Vakal, Feng You, Wei Guo, Wei Wang, Zhenhua Feng, Fuguang Li. Freeze substitution Hi-C, a convenient and cost-effective method for capturing the natural 3D chromatin conformation from frozen samples[J]. Journal of Genetics and Genomics, 2021, 48(3): 237-247. doi: 10.1016/j.jgg.2020.11.002
    [11]Daijing Sun, Jie Weng, Yuhao Dong, Yan Jiang. 3D genome organization in the central nervous system, implications for neuropsychological disorders[J]. Journal of Genetics and Genomics, 2021, 48(12): 1045-1056. doi: 10.1016/j.jgg.2021.06.017
    [12]Weizhi Ouyang, Zhilin Cao, Dan Xiong, Guoliang Li, Xingwang Li. Decoding the plant genome: From epigenome to 3D organization[J]. Journal of Genetics and Genomics, 2020, 47(8): 425-435. doi: 10.1016/j.jgg.2020.06.007
    [13]Ke An, Fengxia Du, Hao Meng, Guochao Li, Minjie Zhang, Zongzhi Liu, Zitong Zhao, Zilong Zhang, Di Yu, Dong Wang, Caiyun Yang, Wencui Ma, Lin Yuan, Meiting Zhou, Lili Duan, Li Jin, Hui Li, Yan Zhang, Jianzhong Su, Jie Qiao, Yingli Sun. Transgenerational analysis of H3K4me3 and H3K27me3 by ChIP-Seq links epigenetic inheritance to metabolism[J]. Journal of Genetics and Genomics, 2018, 45(3): 169-172. doi: 10.1016/j.jgg.2017.11.004
    [14]Qi Zhao, Yu Sun, Dawei Wang, Hongwan Zhang, Kai Yu, Jian Zheng, Zhixiang Zuo. LncPipe: A Nextflow-based pipeline for identification and analysis of long non-coding RNAs from RNA-Seq data[J]. Journal of Genetics and Genomics, 2018, 45(7): 399-401. doi: 10.1016/j.jgg.2018.06.005
    [15]Haodong Xu, Jiaqi Zhou, Shaofeng Lin, Wankun Deng, Ying Zhang, Yu Xue. PLMD: An updated data resource of protein lysine modifications[J]. Journal of Genetics and Genomics, 2017, 44(5): 243-250. doi: 10.1016/j.jgg.2017.03.007
    [16]Yu Xue, Xiu-Jie Wang. Bioinformaticians wrestling with the big biomedical data[J]. Journal of Genetics and Genomics, 2017, 44(5): 223-225. doi: 10.1016/j.jgg.2017.05.002
    [17]Haiyan Huang, Qiang Wu. CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes[J]. Journal of Genetics and Genomics, 2016, 43(5): 273-288. doi: 10.1016/j.jgg.2016.03.006
    [18]JoAnne J. Babula, Jing-Yuan Liu. Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy[J]. Journal of Genetics and Genomics, 2015, 42(10): 531-547. doi: 10.1016/j.jgg.2015.09.002
    [19]Yuhui Pang, Xinhong Chen, Jixin Zhao, Wanli Du, Xueni Cheng, Jun Wu, Yanli Li, Liangming Wang, Jing Wang, Qunhui Yang. Molecular Cytogenetic Characterization of a Wheat – Leymus mollis 3D(3Ns) Substitution Line with Resistance to Leaf Rust[J]. Journal of Genetics and Genomics, 2014, 41(4): 205-214. doi: 10.1016/j.jgg.2013.11.008
    [20]Stefanie Dukowic-Schulze, Anthony Harris, Junhua Li, Anitha Sundararajan, Joann Mudge, Ernest F. Retzel, Wojciech P. Pawlowski, Changbin Chen. Comparative Transcriptomics of Early Meiosis in Arabidopsis and Maize[J]. Journal of Genetics and Genomics, 2014, 41(3): 139-152. doi: 10.1016/j.jgg.2013.11.007
  • Cited by

    Periodical cited type(4)

    1. Xia, T., Hu, L., Zuo, L. et al. ST-GEARS: Advancing 3D downstream research through accurate spatial information recovery. Nature Communications, 2024, 15(1): 7806. doi:10.1038/s41467-024-51935-0
    2. Wang, L., Li, M., Hwang, T.H. The 3D Revolution in Cancer Discovery. Cancer Discovery, 2024, 14(4): 625-629. doi:10.1158/2159-8290.CD-23-1499
    3. Liu, C., Wu, P., Wu, X. et al. AsmMix: an efficient haplotype-resolved hybrid de novo genome assembling pipeline. Frontiers in Genetics, 2024. doi:10.3389/fgene.2024.1421565
    4. Naveen, P., Maheswar, R., Trojovský, P. GeoNLU: Bridging the gap between natural language and spatial data infrastructures. Alexandria Engineering Journal, 2024. doi:10.1016/j.aej.2023.12.027

    Other cited types(5)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (593) PDF downloads (19) Cited by (9)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return