9.9
CiteScore
7.1
Impact Factor
Volume 50 Issue 11
Nov.  2023
Turn off MathJax
Article Contents

CRISPR-mediated acceleration of wheat improvement: advances and perspectives

doi: 10.1016/j.jgg.2023.09.007
Funds:

This work was supported by grants from the National Key Research and Development Program of China (No. 2021YFF1000800), the Frontiers Science Center for Molecular Design Breeding (No. 2022TC152), the Hainan Yazhou Bay Seed Laboratory (No. B21HJ0504), and China Agricultural University Start-up Funding.

  • Received Date: 2023-08-18
  • Accepted Date: 2023-09-14
  • Rev Recd Date: 2023-09-13
  • Publish Date: 2023-09-21
  • Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
  • loading
  • Abdallah, N.A., Elsharawy, H., Abulela, H.A., Thilmony, R., Abdelhadi, A.A., Elarabi, N.I., 2022. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops Food 6, 1-17.
    Abe, F., Haque, E., Hisano, H., Tanaka, T., Kamiya, Y., Mikami, M., Kawaura, K., Endo, M., Onishi, K., Hayashi, T., et al., 2019. Genome-edited triple-recessive mutation alters seed dormancy in wheat. Cell Rep. 28, 1362-1369.
    Anzalone, A.V., Gao, X.D., Podracky, C.J., Nelson, A.T., Koblan, L.W., Raguram, A., Levy, J.M., Mercer, J.A.M., Liu, D.R., 2022. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731-740.
    Anzalone, A.V., Koblan, L.W., Liu, D.R., 2020. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824-844.
    Anzalone, A.V., Randolph, P.B., Davis, J.R., Sousa, A.A., Koblan, L.W., Levy, J.M., Chen, P.J., Wilson, C., Newby, G.A., Raguram, A., et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157.
    Arentz-Hansen, H., McAdam, S.N., Molberg, OE., Fleckenstein, B., Lundin, K.E., Joergensen, T.J., Jung, G., Roepstorff, P., Sollid, L.M., 2002. Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123, 803-809.
    Ash, G., 1996. Wheat rusts: An atlas of resistance genes. Australasian Plant Pathology 25, 70.
    Awan, M. J. A., Pervaiz, K., Rasheed, A., Amin, I., Saeed, N. A., Dhugga, K. S., Mansoor, S., 2022. Genome edited wheat- current advances for the second green revolution. Biotechnol. Adv. 60, 108006.
    Bai, M., Yuan, J., Kuang, H., Gong, P., Li, S., Zhang, Z., Liu, B., Sun, J., Yang, M., Yang, L., Wang, D., Song, S., Guan, Y., 2020. Generation of a multiplex mutagenesis population via pooled CRISPR-Cas9 in soya bean. Plant Biotechnol. J. 18 721-731.
    Bartlett, M.E., Moyers, B.T., Man, J., Subramaniam, B., Makunga, N.P., 2023. The power and perils of de novo domestication using genome editing. Annu. Rev. Plant Biol. 74, 727-750.
    Birchler, J.A., 2015. Engineered minichromosomes in plants. Chromosome Research 23, 77-85.
    Biswal, A.K., Hernandez, L.R.B., Castillo, A.I.R., Debernardi, J.M., Dhugga, K.S., 2023. An efficient transformation method for genome editing of elite bread wheat cultivars. Front. Plant Sci. 14, 1135047.
    Borrill, P., Adamski, N., Uauy, C., 2015. Genomics as the key to unlocking the polyploid potential of wheat. New Phytol. 208, 1008-1022.
    Branzei, D., Foiani, M., 2008. Regulation of DNA repair throughout the cell cycle. Nat. Rev. Mol. Cell Biol. 9, 297-308.
    Butt, H., Eid, A., Momin, A.A., Bazin, J., Crespi, M., Arold, S.T., Mahfouz, M.M., 2019. CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biol. 20, 73.
    Cermak, T., Curtin, S.J., Gil-Humanes, J., Cegan, R., Kono, T.J.Y., Konecna, E., Belanto, J.J., Starker, C.G., Mathre, J.W., Greenstein, R.L., et al., 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196-1217.
    Chang, C., Zhang, H., Lu, J., Si, H., Ma, C., 2023. Genetic improvement of wheat with pre-harvest sprouting resistance in China. Genes 14, 837.
    Chen, H., Su, Z., Tian, B., Liu, Y., Pang, Y., Kavetskyi, V., Trick, H.N., Bai, G., 2022a. Development and optimization of a Barley stripe mosaic virus-mediated gene editing system to improve Fusarium head blight resistance in wheat. Plant Biotechnol. J. 20, 1018-1020.
    Chen, K., Wang, Y., Zhang, R., Zhang, H., Gao, C., 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu. Rev. Plant Biol. 70, 667-697.
    Chen, Z., Ke, W., He, F., Chai, L., Cheng, X., Xu, H., Wang, X., Du, D., Zhao, Y., Chen, X., et al., 2022b. A single nucleotide deletion in the third exon of FT-D1 increases the spikelet number and delays heading date in wheat (Triticum aestivum L.). Plant Biotechnol. J. 20, 920-933.
    Choi, J., Chen, W., Suiter, C.C., Lee, C., Chardon, F.M., Yang, W., Leith, A., Daza, R.M., Martin, B., Shendure, J., 2022. Precise genomic deletions using paired prime editing. Nat. Biotechnol. 40, 218-226.
    Collard, B.C., Mackill, D.J., 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 557-572.
    Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., et al., 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823.
    Cram, D., Kulkarni, M., Buchwaldt, M., Rajagopalan, N., Bhowmik, P., Rozwadowski, K., Parkin, I.A.P., Sharpe, A.G., Kagale, S., 2019. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat. BMC Plant Biol. 19, 474.
    D'Ovidio, R., Anderson, O.D., 1994. PCR analysis to distinguish between alleles of a member of a multigene family correlated with wheat bread-making quality. Theor. Appl. Genet. 88, 759-763.
    de Pater, S., Klemann, B., Hooykaas, P.J.J., 2018. True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template. Sci. Rep. 8, 3338.
    Debernardi, J.M., Tricoli, D.M., Ercoli, M.F., Hayta, S., Ronald, P., Palatnik, J.F., Dubcovsky, J., 2020. A GRF-GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nat. Biotechnol. 38, 1274-1279.
    DeHaan, L., Larson, S., Lopez-Marques, R.L., Wenkel, S., Gao, C., Palmgren, M., 2020. Roadmap for accelerated domestication of an emerging perennial grain crop. Trends Plant Sci. 25, 525-537.
    Dong, O.X., Ronald, P.C., 2021. Targeted DNA insertion in plants. Proc. Natl. Acad. Sci. U. S. A. 118, e2004834117.
    Doyle, C., Higginbottom, K., Swift, T.A., Winfield, M., Bellas, C., Benito-Alifonso, D., Fletcher, T., Galan, M.C., Edwards, K., Whitney, H.M., 2019. A simple method for spray-on gene editing in planta. bioRxiv. https://doi.org/10.1101/805036.
    Du, D., Zhang, D., Yuan, J., Feng, M., Li, Z., Wang, Z., Zhang, Z., Li, X., Ke, W., Li, R., et al., 2021. FRIZZY PANICLE defines a regulatory hub for simultaneously controlling spikelet formation and awn elongation in bread wheat. New Phytol. 231, 814-833.
    Duan, K., Cheng, Y., Ji, J., Wang, C., Wei, Y., Wang, Y., 2021. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean. J. Integr. Plant Biol. 63, 1620-1631.
    Dubcovsky, J., Dvorak, J., 2007. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316, 1862-1866.
    Eliby, S., Bekkuzhina, S., Kishchenko, O., Iskakova, G., Kylyshbayeva, G., Jatayev, S., Soole, K., Langridge, P., Borisjuk, N., Shavrukov, Y., 2022. Developments and prospects for doubled haploid wheat. Biotechnol. Adv. 60, 108007.
    Elliott, C., Zhou, F., Spielmeyer, W., Panstruga, R., Schulze-Lefert, P., 2002. Functional conservation of wheat and rice Mlo orthologs in defense modulation to the powdery mildew fungus. Mol Plant Microbe Interact. 15, 1069-1077.
    Errum, A., Rehman, N., Uzair, M., Inam, S., Ali, G.M., Khan, M.R., 2023. CRISPR/Cas9 editing of wheat Ppd-1 gene homoeologs alters spike architecture and grain morphometric traits. Funct. Integr. Genomics 23, 66.
    Ewa, W. G., Agata, T., Milica, P., Anna, B., Dennis, E., Nick, V., Godelieve, G., Selim, C., Naghmeh, A., Tomasz, T., 2022. Public perception of plant gene technologies worldwide in the light of food security. GM Crops Food. 13, 218-241.
    Friebe, B., Heun, M., Bushuk, W., 1989. Cytological characterization, powdery mildew resistance and storage protein composition of tetraploid and hexaploid 1BL/1RS wheat-rye translocation lines. Theor. Appl. Genet. 78, 425-432.
    Gabay, G., Wang, H., Zhang, J., Moriconi, J.I., Burguener, G.F., Gualano, L.D., Howell, T., Lukaszewski, A., Staskawicz, B., Cho, M.J., et al., 2023. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat. Commun. 14, 539.
    Gaillochet, C., Pena Fernandez, A., Goossens, V., D'Halluin, K., Drozdzecki, A., Shafie, M., Van Duyse, J., Van Isterdael, G., Gonzalez, C., Vermeersch, M., et al., 2023. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol. 24, 6.
    Gao, C., 2021. Genome engineering for crop improvement and future agriculture. Cell 184, 1621-1635.
    Gao, X., Chen, J., Dai, X., Zhang, D., Zhao, Y., 2016. An effective strategy for reliably lsolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing. Plant Physiol. 171, 1794-1800.
    Gaudelli, N.M., Komor, A.C., Rees, H.A., Packer, M.S., Badran, A.H., Bryson, D.I., Liu, D.R., 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471.
    Ghogare, R., Ludwig, Y., Bueno, G.M., Slamet-Loedin, I.H., Dhingra, A., 2021. Genome editing reagent delivery in plants. Transgenic Res. 30, 321-335.
    Gil-Humanes, J., Wang, Y., Liang, Z., Shan, Q., Ozuna, C.V., Sanchez-Leon, S., Baltes, N.J., Starker, C., Barro, F., Gao, C., et al., 2017. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251-1262.
    Gordon, J.E., Christie, P.J., 2014. The Agrobacterium Ti plasmids. Microbiol. Spectr. 2, 6.
    Guo, M., Wang, Q., Zong, Y., Nian, J., Li, H., Li, J., Wang, T., Gao, C., Zuo, J., 2021. Genetic manipulations of TaARE1 boost nitrogen utilization and grain yield in wheat. J. Genet. Genomics 48, 950-953.
    Guo, W., Xin, M., Wang, Z., Yao, Y., Hu, Z., Song, W., Yu, K., Chen, Y., Wang, X., Guan, P., et al., 2020. Origin and adaptation to high altitude of Tibetan semi-wild wheat. Nat. Commun. 11, 5085.
    Gupta, A., Hua, L., Zhang, Z., Yang, B., Li, W., 2023. CRISPR-induced miRNA156-recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat. Plant Biotechnol. J. 21, 536-548.
    Hamada, H., Linghu, Q., Nagira, Y., Miki, R., Taoka, N., Imai, R., 2017. An in planta biolistic method for stable wheat transformation. Sci. Rep. 7, 11443.
    Han, G., Liu, S., Wang, J., Jin, Y., Zhou, Y., Luo, Q., Liu, H., Zhao, H., An, D., 2020. Identification of an elite wheat-rye T1RS·1BL translocation line conferring high resistance to powdery mildew and stripe rust. Plant Dis. 104, 2940-2948.
    Han, H., Wu, Z., Zheng, L., Han, J., Zhang, Y., Li, J., Zhang, S., Li, G., Ma, C., Wang, P., 2022. Generation of a high-efficiency adenine base editor with TadA8e for developing wheat dinitroaniline-resistant germplasm. Crop J. 10, 368-374.
    He, C., Liu, H., Chen, D., Xie, W.Z., Wang, M., Li, Y., Gong, X., Yan, W., Chen, L.L., 2021. CRISPR-Cereal: a guide RNA design tool integrating regulome and genomic variation for wheat, maize and rice. Plant Biotechnol. J. 19, 2141-2143.
    He, F., Wang, C., Sun, H., Tian, S., Zhao, G., Liu, C., Wan, C., Guo, J., Huang, X., Zhan, G., et al., 2023. Simultaneous editing of three homoeologues of TaCIPK14 confers broad-spectrum resistance to stripe rust in wheat. Plant Biotechnol. J. 21, 354-368.
    He, Y., Zhang, T., Sun, H., Zhan, H., Zhao, Y., 2020. A reporter for noninvasively monitoring gene expression and plant transformation. Hortic. Res. 7, 152.
    Hedden, P., 2003. The genes of the Green Revolution. Trends Genet. 19, 5-9.
    Hsieh-Feng, V., Yang, Y., 2020. Efficient expression of multiple guide RNAs for CRISPR/Cas genome editing. aBIOTECH 1, 123-134.
    Huang, L., Tan, H., Zhang, C., Li, Q., Liu, Q., 2021. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2, 100237.
    Ibrahim, S., Saleem, B., Rehman, N., Zafar, S.A., Naeem, M.K., Khan, M.R., 2022. CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains. J. Adv. Res. 37, 33-41.
    IWGSC, 2014. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345, 1251788.
    IWGSC, 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191.
    Jacobs, T.B., Zhang, N., Patel, D., and Martin, G.B., 2017. Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiol. 174, 2023-2037.
    Jiang, F., Doudna, J.A., 2017. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 46, 505-529.
    Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821.
    Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., et al., 2014. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997.
    Kan, J., Cai, Y., Cheng, C., Chen, S., Jiang, C., He, Z., Yang, P., 2023. CRISPR/Cas9-guided knockout of eIF4E improves Wheat yellow mosaic virus resistance without yield penalty. Plant Biotechnol. J. 21, 893-895.
    Kan, J., Cai, Y., Cheng, C., Jiang, C., Jin, Y., Yang, P., 2022. Simultaneous editing of host factor gene TaPDIL5-1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat. New Phytol. 234, 340-344.
    Kim, D., Alptekin, B., Budak, H., 2018. CRISPR/Cas9 genome editing in wheat. Funct. Integr. Genomics 18, 31-41.
    Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A., Liu, D.R., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424.
    Kong, X., Wang, F., Wang, Z., Gao, X., Geng, S., Deng, Z., Zhang, S., Fu, M., Cui, D., Liu, S., et al., 2023. Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat. Plant Biotechnol. J., 10.1111/pbi.14107.
    Kumar, J., Char, S.N., Weiss, T., Liu, H., Liu, B., Yang, B., Zhang, F., 2023. Efficient protein tagging and cis-regulatory element engineering via precise and directional oligonucleotide-based targeted insertion in plants. Plant Cell 35, 2722-2735.
    Kurt, I.C., Zhou, R., Iyer, S., Garcia, S.P., Miller, B.R., Langner, L.M., Grunewald, J., Joung, J.K., 2021. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells. Nat. Biotechnol. 39, 41-46.
    Lampe, G.D., King, R.T., Halpin-Healy, T.S., Klompe, S.E., Hogan, M.I., Vo, P.L.H., Tang, S., Chavez, A., Sternberg, S.H., 2023. Targeted DNA integration in human cells without double-strand breaks using CRISPR-associated transposases. Nat. Biotechnol., 10.1038/s41587-023-01748-1.
    Levy, A.A., Feldman, M., 2022. Evolution and origin of bread wheat. Plant Cell 34, 2549-2567.
    Li, C., Zhang, R., Meng, X., Chen, S., Zong, Y., Lu, C., Qiu, J.L., Chen, Y.H., Li, J., Gao, C., 2020a. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat. Biotechnol. 38, 875-882.
    Li, C., Zong, Y., Wang, Y., Jin, S., Zhang, D., Song, Q., Zhang, R., Gao, C., 2018a. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol. 19, 59.
    Li, J., Jiao, G., Sun, Y., Chen, J., Zhong, Y., Yan, L., Jiang, D., Ma, Y., Xia, L., 2021a. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9. Plant Biotechnol. J. 19, 937-951.
    Li, J., Wang, Z., He, G., Ma, L., Deng, X.W., 2020b. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. J. Genet. Genomics 47, 263-272.
    Li, J., Zhang, S., Zhang, R., Gao, J., Qi, Y., Song, G., Li, W., Li, Y., Li, G., 2021b. Efficient multiplex genome editing by CRISPR/Cas9 in common wheat. Plant Biotechnol. J. 19, 427-429.
    Li, Q., Lu, Y., Pan, C., Yao, M., Zhang, J., Yang, X., Liu, W., Li, X., Xi, Y., Li, L., 2016. Chromosomal localization of genes conferring desirable agronomic traits from wheat-agropyron cristatum disomic addition line 5113. PLoS One 11, e0165957.
    Li, S., Lin, D., Zhang, Y., Deng, M., Chen, Y., Lv, B., Li, B., Lei, Y., Wang, Y., Zhao, L., et al., 2022. Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460.
    Li, S., Zhang, C., Li, J., Yan, L., Wang, N., Xia, L., 2021c. Present and future prospects for wheat improvement through genome editing and advanced technologies. Plant Commun. 2, 100211.
    Li, T., Hu, J., Sun, Y., Li, B., Zhang, D., Li, W., Liu, J., Li, D., Gao, C., Zhang, Y., et al., 2021d. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture. Mol. Plant 14, 1787-1798.
    Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., Dong, W., Gao, C., Xu, C., 2018b. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160-1163.
    Li, Z., 1986. A new wheat distant hybrid--Xiaoyan6 (in Chinese). Shanxi agricultural science 05, 30.
    Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J., Zhang, H., Liu, C., Ran, Y., et al., 2017. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261.
    Lin, J., Song, N., Liu, D., Liu, X., Chu, W., Li, J., Chang, S., Liu, Z., Chen, Y., Yang, Q., et al., 2022. Histone acetyltransferase TaHAG1 interacts with TaNACL to promote heat stress tolerance in wheat. Plant Biotechnol J. 20, 1645-1647.
    Lin, Q., Zhu, Z., Liu, G., Sun, C., Lin, D., Xue, C., Li, S., Zhang, D., Gao, C., Wang, Y., et al., 2021. Genome editing in plants with MAD7 nuclease. J. Genet. Genomics 48, 444-451.
    Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A.V., Raguram, A., Doman, J.L., et al., 2020. Prime genome editing in rice and wheat. Nat. Biotechnol. 38, 582-585.
    Liu, C., Zhong, Y., Qi, X., Chen, M., Liu, Z., Chen, C., Tian, X., Li, J., Jiao, Y., Wang, D., et al., 2020a. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnol. J. 18, 316-318.
    Liu, D., Yang, H., Zhang, Z., Chen, Q., Guo, W., Rossi, V., Xin, M., Du, J., Hu, Z., Liu, J., et al., 2023a. An elite γ-gliadin allele improves end-use quality in wheat. New Phytol. 239, 87-101.
    Liu, H., Wang, K., Jia, Z., Gong, Q., Lin, Z., Du, L., Pei, X., Ye, X., 2020b. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system. J. Exp. Bot. 71, 1337-1349.
    Liu, H., Wang, K., Tang, H., Gong, Q., Du, L., Pei, X., Ye, X., 2020c. CRISPR/Cas9 editing of wheat TaQ genes alters spike morphogenesis and grain threshability. J. Genet. Genomics 47, 563-575.
    Liu, H.J., Jian, L., Xu, J., Zhang, Q., Zhang, M., Jin, M., Peng, Y., Yan, J., Han, B., Liu, J., et al., 2020d. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397-1413.
    Liu, J., Yao, Y., Xin, M., Peng, H., Ni, Z., Sun, Q., 2022. Shaping polyploid wheat for success: Origins, domestication, and the genetic improvement of agronomic traits. J. Integr. Plant Biol. 64, 536-563.
    Liu, L., Kuang, Y., Yan, F., Li, S., Ren, B., Gosavi, G., Spetz, C., Li, X., Wang, X., Zhou, X., et al., 2021. Developing a novel artificial rice germplasm for dinitroaniline herbicide resistance by base editing of OsTubA2. Plant Biotechnol. J. 19, 5-7.
    Liu, T., Zhang, X., Li, K., Yao, Q., Zhong, D., Deng, Q., Lu, Y., 2023b. Large-scale genome editing in plants: approaches, applications, and future perspectives. Curr. Opin. Biotechnol. 79, 102875.
    Liu, X., Bie, X.M., Lin, X., Li, M., Wang, H., Zhang, X., Yang, Y., Zhang, C., Zhang, X.S., Xiao, J., 2023c. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nat. Plants 9, 908-925.
    Lotan, T., Ohto, M., Yee, K.M., West, M.A., Lo, R., Kwong, R.W., Yamagishi, K., Fischer, R.L., Goldberg, R.B., Harada, J.J., 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195-1205.
    Lowe, K., La Rota, M., Hoerster, G., Hastings, C., Wang, N., Chamberlin, M., Wu, E., Jones, T., Gordon-Kamm, W., 2018. Rapid genotype "independent" Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cell Dev. Biol. Plant 54, 240-252.
    Lowe, K., Wu, E., Wang, N., Hoerster, G., Hastings, C., Cho, M.J., Scelonge, C., Lenderts, B., Chamberlin, M., Cushatt, J., et al., 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998-2015.
    Lu, Y., Ye, X., Guo, R., Huang, J., Wang, W., Tang, J., Tan, L., Zhu, J.K., Chu, C., Qian, Y., 2017. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system. Mol. Plant 10, 1242-1245.
    Luo, J., Li, S., Xu, J., Yan, L., Ma, Y., Xia, L., 2021. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing. Mol. Plant 14, 847-850.
    Luo, W., Suzuki, R., Imai, R., 2023. Precise in planta genome editing via homology-directed repair in wheat. Plant Biotechnol. J. 21, 668-670.
    Lv, J., Yu, K., Wei, J., Gui, H., Liu, C., Liang, D., Wang, Y., Zhou, H., Carlin, R., Rich, R., et al., 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nat. Biotechnol. 38, 1397-1401.
    Ma, S., Wang, M., Wu, J., Guo, W., Chen, Y., Li, G., Wang, Y., Shi, W., Xia, G., Fu, D., et al., 2021. WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol. Plant 14, 1965-1968.
    Meng, X., Yu, H., Zhang, Y., Zhuang, F., Song, X., Gao, S., Gao, C., Li, J., 2017. Construction of a genome-wide mutant library in rice using CRISPR/Cas9. Mol. Plant 10, 1238-1241.
    Ming, M., Ren, Q., Pan, C., He, Y., Zhang, Y., Liu, S., Zhong, Z., Wang, J., Malzahn, A.A., Wu, J., et al., 2020. CRISPR-Cas12b enables efficient plant genome engineering. Nat. Plants 6, 202-208.
    Nagamine, A., Ezura, H., 2022. Genome editing for improving crop nutrition. Front. Genome Ed. 4, 850104.
    Ni, P., Zhao, Y., Zhou, X., Liu, Z., Huang, Z., Ni, Z., Sun, Q., Zong, Y., 2023. Efficient and versatile multiplex prime editing in hexaploid wheat. Genome Biol. 24, 156.
    Nishizawa-Yokoi, A., Nonaka, S., Saika, H., Kwon, Y.I., Osakabe, K., Toki, S., 2012. Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol. 196, 1048-1059.
    Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson-Haigh, N.S., Tucker, E.J., Baumann, U., Langridge, P., Whitford, R., 2019. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnol. J. 17, 1905-1913.
    Pavan, S., Jacobsen, E., Visser, R.G., Bai, Y., 2010. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed 25, 1-12.
    Peng, J., Richards, D. E., Hartley, N. M., Murphy, G. P., Devos, K. M., Flintham, J. E., Beales, J., Fish, L. J., Worland, A. J., Pelica, F., Sudhakar, D., Christou, P., Snape, J. W., Gale, M. D., Harberd, N. P. 1999. ‘Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256-261.
    Powles, S.B., Yu, Q., 2010. Evolution in action: plants resistant to herbicides. Annu. Rev. Plant Biol. 61, 317-347.
    Qiu, F., Xing, S., Xue, C., Liu, J., Chen, K., Chai, T., Gao, C., 2022. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regeneration and improves genome editing. Sci. China Life Sci. 65, 731-738.
    Que, Q., Chen, Z., Kelliher, T., Skibbe, D., Dong, S., Chilton, M.D., 2019. Plant DNA repair pathways and their applications in genome engineering. Methods Mol. Biol. 1917, 3-24.
    Raffan, S., Sparks, C., Huttly, A., Hyde, L., Martignago, D., Mead, A., Hanley, S.J., Wilkinson, P.A., Barker, G., Edwards, K.J., et al., 2021. Wheat with greatly reduced accumulation of free asparagine in the grain, produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2. Plant Biotechnol. J. 19, 1602-1613.
    Ran, Y., Liang, Z., Gao, C., 2017. Current and future editing reagent delivery systems for plant genome editing. Sci. China Life Sci. 60, 490-505.
    Ran, Y., Patron, N., Kay, P., Wong, D., Buchanan, M., Cao, Y.Y., Sawbridge, T., Davies, J.P., Mason, J., Webb, S.R., et al., 2018. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template. Plant Biotechnol. J. 16, 2088-2101.
    Rey, M.D., Martin, A.C., Smedley, M., Hayta, S., Harwood, W., Shaw, P., Moore, G., 2018. Magnesium increases homoeologous crossover frequency during meiosis in ZIP4 (Ph1 Gene) mutant wheat-wild relative hybrids. Front. Plant Sci. 9, 509.
    Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E., Lippman, Z. B., 2017. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470-480.
    Ronspies, M., Dorn, A., Schindele, P., Puchta, H., 2021. CRISPR-Cas-mediated chromosome engineering for crop improvement and synthetic biology. Nat. Plants 7, 566-573.
    Sanchez-Leon, S., Gil-Humanes, J., Ozuna, C.V., Gimenez, M.J., Sousa, C., Voytas, D.F., Barro, F., 2018. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 16, 902-910.
    Sato, K., Yamane, M., Yamaji, N., Kanamori, H., Tagiri, A., Schwerdt, J.G., Fincher, G.B., Matsumoto, T., Takeda, K., Komatsuda, T., 2016. Alanine aminotransferase controls seed dormancy in barley. Nat. Commun. 7, 11625.
    Scheben, A., Edwards, D., 2018. Bottlenecks for genome-edited crops on the road from lab to farm. Genome Biol. 19, 178.
    Shan, Q., Wang, Y., Li, J., Gao, C., 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nat. Protoc. 9, 2395-2410.
    Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., Zhang, K., Liu, J., Xi, J.J., Qiu, J.L., et al., 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688.
    Singh, M., Kumar, M., Albertsen, M.C., Young, J.K., Cigan, A.M., 2018. Concurrent modifications in the three homeologs of Ms45 gene with CRISPR-Cas9 lead to rapid generation of male sterile bread wheat (Triticum aestivum L.). Plant Mol. Biol. 97, 371-383.
    Song, L., Liu, J., Cao, B., Liu, B., Zhang, X., Chen, Z., Dong, C., Liu, X., Zhang, Z., Wang, W., et al., 2023. Reducing brassinosteroid signalling enhances grain yield in semi-dwarf wheat. Nature 617, 118-124.
    Spok, A., Sprink, T., Allan, A.C., Yamaguchi, T., Daye, C., 2022. Towards social acceptability of genome-edited plants in industrialised countries? Emerging evidence from Europe, United States, Canada, Australia, New Zealand, and Japan. Front. Genome Ed. 4, 899331.
    Stone, S.L., Kwong, L.W., Yee, K.M., Pelletier, J., Lepiniec, L., Fischer, R.L., Goldberg, R.B., Harada, J.J., 2001. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl. Acad. Sci. U. S. A. 98, 11806-11811.
    Strecker, J., Ladha, A., Gardner, Z., Schmid-Burgk, J.L., Makarova, K.S., Koonin, E.V., Zhang, F., 2019. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48-53.
    Su, Z., Bernardo, A., Tian, B., Chen, H., Wang, S., Ma, H., Cai, S., Liu, D., Zhang, D., Li, T., et al., 2019. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 51, 1099-1105.
    Sukegawa, S., Nureki, O., Toki, S., Saika, H., 2023. Genome editing in rice mediated by miniature size Cas nuclease SpCas12f. Front. Genome Ed. 5, 1138843.
    Sun, C., Lei, Y., Li, B., Gao, Q., Li, Y., Cao, W., Yang, C., Li, H., Wang, Z., Li, Y., et al., 2023a. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol., 10.1038/s41587-023-01769-w.
    Sun, W., Zhang, H., Yang, S., Liu, L., Xie, P., Li, J., Zhu, Y., Ouyang, Y., Xie, Q., Zhang, H., et al., 2023b. Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. Natl. Sci. Rev. 10, nwad075.
    Sun, Y., Guo, L., Zhu, Q.H., Fan, L., 2022. When domestication bottleneck meets weed. Mol. Plant 15, 1405-1408.
    Tang, H., Liu, H., Zhou, Y., Liu, H., Du, L., Wang, K., Ye, X., 2021. Fertility recovery of wheat male sterility controlled by Ms2 using CRISPR/Cas9. Plant Biotechnol. J. 19, 224-226.
    Tao, R., Wang, Y., Hu, Y., Jiao, Y., Zhou, L., Jiang, L., Li, L., He, X., Li, M., Yu, Y., et al., 2022. WT-PE: Prime editing with nuclease wild-type Cas9 enables versatile large-scale genome editing. Signal Transduct. Target. Ther. 7, 108.
    Tesfaye, K., 2021. Climate change in the hottest wheat regions. Nat. Food 2, 8-9.
    Tong, H., Wang, X., Liu, Y., Liu, N., Li, Y., Luo, J., Ma, Q., Wu, D., Li, J., Xu, C., et al., 2023. Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase. Nat. Biotechnol. 41, 1080-1084.
    Tsai, S.Q., Joung, J.K., 2016. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17, 300-312.
    Uauy, C., Wulff, B.B.H., Dubcovsky, J., 2017. Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu. Rev. Genet. 51, 435-454.
    Vetch, J.M., Stougaard, R.N., Martin, J.M., Giroux, M.J., 2019. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (Triticum aestivum L.). Plant Sci. 281, 180-185.
    Waltz, E., 2016. CRISPR-edited crops free to enter market, skip regulation. Nat Biotechnol. 34, 582.
    Wang, H., Feng, M., Jiang, Y., Du, D., Dong, C., Zhang, Z., Wang, W., Liu, J., Liu, X., Li, S., et al., 2023a. Thermosensitive SUMOylation of TaHsfA1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat. Plant Cell. Epub ahead of print. PMID: 37399070.
    Wang, H., He, Y., Wang, Y., Li, Z., Hao, J., Song, Y., Wang, M., Zhu, J.K., 2022a. Base editing-mediated targeted evolution of ACCase for herbicide-resistant rice mutants. J. Integr. Plant Biol. 64, 2029-2032.
    Wang, J., Li, C., Li, L., Gao, L., Hu, G., Zhang, Y., Reynolds, M.P., Zhang, X., Jia, J., Mao, X., et al., 2023b. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de-phosphorylating TaSnRK1.1 in wheat. J. Integr Plant Biol. 65, 1918-1936.
    Wang, K., Gong, Q., Ye, X., 2020a. Recent developments and applications of genetic transformation and genome editing technologies in wheat. Theor. Appl. Genet. 133, 1603-1622.
    Wang, K., Shi, L., Liang, X., Zhao, P., Wang, W., Liu, J., Chang, Y., Hiei, Y., Yanagihara, C., Du, L., et al., 2022b. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat. Plants 8, 110-117.
    Wang, N., Fan, X., He, M., Hu, Z., Tang, C., Zhang, S., Lin, D., Gan, P., Wang, J., Huang, X., et al., 2022c. Transcriptional repression of TaNOX10 by TaWRKY19 compromises ROS generation and enhances wheat susceptibility to stripe rust. Plant Cell 34, 1784-1803.
    Wang, N., Tang, C., Fan, X., He, M., Gan, P., Zhang, S., Hu, Z., Wang, X., Yan, T., Shu, W., et al., 2022d. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi. Cell 185, 2961-2974.
    Wang, Q., Alariqi, M., Wang, F., Li, B., Ding, X., Rui, H., Li, Y., Xu, Z., Qin, L., Sun, L., et al., 2020b. The application of a heat-inducible CRISPR/Cas12b (C2c1) genome editing system in tetraploid cotton (G. hirsutum) plants. Plant Biotechnol. J. 18, 2436-2443.
    Wang, S., Zong, Y., Lin, Q., Zhang, H., Chai, Z., Zhang, D., Chen, K., Qiu, J.L., Gao, C., 2020c. Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat. Biotechnol. 38, 1460-1465.
    Wang, W., Pan, Q., He, F., Akhunova, A., Chao, S., Trick, H., Akhunov, E., 2018. Transgenerational CRISPR-Cas9 activity facilitates multiplex gene editing in allopolyploid Wheat. CRISPR J. 1, 65-74.
    Wang, W., Pan, Q., Tian, B., He, F., Chen, Y., Bai, G., Akhunova, A., Trick, H.N., Akhunov, E., 2019. Gene editing of the wheat homologs of TONNEAU1-recruiting motif encoding gene affects grain shape and weight in wheat. Plant J. 100, 251-264.
    Wang, W., Tian, B., Pan, Q., Chen, Y., He, F., Bai, G., Akhunova, A., Trick, H.N., Akhunov, E., 2021. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases. Plant Biotechnol. J. 19, 2428-2441.
    Wang, W., Yu, Z., He, F., Bai, G., Trick, H.N., Akhunova, A., Akhunov, E., 2022e. Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system. Plant Biotechnol. J. 20, 2332-2341.
    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C., Qiu, J.L., 2014. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951.
    Wang, Y., Du, F., Wang, J., Wang, K., Tian, C., Qi, X., Lu, F., Liu, X., Ye, X., Jiao, Y., 2022f. Improving bread wheat yield through modulating an unselected AP2/ERF gene. Nat. Plants 8, 930-939.
    Wang, Y., Zong, Y., Gao, C., 2017. Targeted mutagenesis in hexaploid bread wheat using the TALEN and CRISPR/Cas systems. Methods Mol. Biol. 1679, 169-185.
    Wang, Z., Wang, W., Xie, X., Wang, Y., Yang, Z., Peng, H., Xin, M., Yao, Y., Hu, Z., Liu, J., Su, Z., Xie, C., Li, B., Ni, Z., Sun, Q., Guo, W., 2022g. Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference. Nat. Commun. 13, 3891.
    Wen, J., Qin, Z., Sun, L., Zhang, Y., Wang, D., Peng, H., Yao, Y., Hu, Z., Ni, Z., Sun, Q., et al., 2023. Alternative splicing of TaHSFA6e modulates heat shock protein-mediated translational regulation in response to heat stress in wheat. New Phytol. Epub ahead of print. PMID: 37403528.
    Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., et al., 2022. Wheat genomic study for genetic improvement of traits in China. Sci. China Life Sci. 65, 1718-1775.
    Xu, F., Tang, J., Wang, S., Cheng, X., Wang, H., Ou, S., Gao, S., Li, B., Qian, Y., Gao, C., et al., 2022. Antagonistic control of seed dormancy in rice by two bHLH transcription factors. Nat. Genet. 54, 1972-1982.
    Xu, R., Kong, F., Qin, R., Li, J., Liu, X., Wei, P., 2021a. Development of an efficient plant dual cytosine and adenine editor. J. Integr. Plant Biol. 63, 1600-1605.
    Xu, R., Liu, X., Li, J., Qin, R., Wei, P., 2021b. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice. Nat. Plants 7, 888-892.
    Yang, L., Machin, F., Wang, S., Saplaoura, E., Kragler, F., 2023. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nat. Biotechnol. 41, 958-967.
    Yarnall, M.T.N., Ioannidi, E.I., Schmitt-Ulms, C., Krajeski, R.N., Lim, J., Villiger, L., Zhou, W., Jiang, K., Garushyants, S.K., Roberts, N., et al., 2023. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500-512.
    Yu, H., Li, J., 2022. Breeding future crops to feed the world through de novo domestication. Nat. Commun. 13, 1171.
    Yu, H., Lin, T., Meng, X., Du, H., Zhang, J., Liu, G., Chen, M., Jing, Y., Kou, L., Li, X., et al., 2021. A route to de novo domestication of wild allotetraploid rice. Cell 184, 1156-1170.
    Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., et al., 2015. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771.
    Zhang, A., Shan, T., Sun, Y., Chen, Z., Hu, J., Hu, Z., Ming, Z., Zhu, Z., Li, X., He, J., et al., 2023a. Directed evolution rice genes with randomly multiplexed sgRNAs assembly of base editors. Plant Biotechnol. J., 10.1111/pbi.14156.
    Zhang, C., Zhong, X., Li, S., Yan, L., Li, J., He, Y., Lin, Y., Zhang, Y., Xia, L., 2023b. Artificial evolution of OsEPSPS through an improved dual cytosine and adenine base editor generated a novel allele conferring rice glyphosate tolerance. J. Integr. Plant Biol., 10.1111/jipb.13543.
    Zhang, D., Zhang, H., Li, T., Chen, K., Qiu, J.L., Gao, C., 2017a. Perfectly matched 20-nucleotide guide RNA sequences enable robust genome editing using high-fidelity SpCas9 nucleases. Genome Biol. 18, 191.
    Zhang, J., Zhang, H., Li, S., Li, J., Yan, L., Xia, L., 2021a. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9. J. Integr. Plant Biol. 63, 1649-1663.
    Zhang, R., Liu, J., Chai, Z., Chen, S., Bai, Y., Zong, Y., Chen, K., Li, J., Jiang, L., Gao, C., 2019a. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat. Plants 5, 480-485.
    Zhang, R., Zhang, S., Li, J., Gao, J., Song, G., Li, W., Geng, S., Liu, C., Lin, Y., Li, Y., et al., 2023c. CRISPR/Cas9-targeted mutagenesis of TaDCL4, TaDCL5 and TaRDR6 induces male sterility in common wheat. Plant Biotechnol. J. 21, 839-853.
    Zhang, S., Zhang, R., Gao, J., Song, G., Li, J., Li, W., Qi, Y., Li, Y., Li, G., 2021b. CRISPR/Cas9-mediated genome editing for wheat grain quality improvement. Plant Biotechnol. J. 19, 1684-1686.
    Zhang, S., Zhang, R., Song, G., Gao, J., Li, W., Han, X., Chen, M., Li, Y., Li, G., 2018a. Targeted mutagenesis using the Agrobacterium tumefaciens-mediated CRISPR-Cas9 system in common wheat. BMC Plant Biol. 18, 302.
    Zhang, Y., Bai, Y., Wu, G., Zou, S., Chen, Y., Gao, C., Tang, D., 2017b. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 91, 714-724.
    Zhang, Y., Li, D., Zhang, D., Zhao, X., Cao, X., Dong, L., Liu, J., Chen, K., Zhang, H., Gao, C., et al., 2018b. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. Plant J. 94, 857-866.
    Zhang, Y., Liang, Z., Zong, Y., Wang, Y., Liu, J., Chen, K., Qiu, J.L., Gao, C., 2016. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617.
    Zhang, Y., Malzahn, A. A., Sretenovic, S., Qi, Y., 2019b. The emerging and uncultivated potential of CRISPR technology in plant science. Nat. Plants. 5, 778-794.
    Zhang, Z., Hua, L., Gupta, A., Tricoli, D., Edwards, K.J., Yang, B., Li, W., 2019c. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Plant Biotechnol. J. 17, 1623-1635.
    Zhao, D., Li, J., Li, S., Xin, X., Hu, M., Price, M.A., Rosser, S.J., Bi, C., Zhang, X., 2021. Glycosylase base editors enable C-to-A and C-to-G base changes. Nat. Biotechnol. 39, 35-40.
    Zhao, D., Zhang, C., Li, Q., Liu, Q., 2022a. Genetic control of grain appearance quality in rice. Biotechnol. Adv. 60, 108014.
    Zhao, J., Zheng, X., Qiao, L., Yang, C., Wu, B., He, Z., Tang, Y., Li, G., Yang, Z., Zheng, J., et al., 2022b. Genome-wide association study reveals structural chromosome variations with phenotypic effects in wheat (Triticum aestivum L.). Plant J. 112, 1447-1461.
    Zhong, Y., Liu, C., Qi, X., Jiao, Y., Wang, D., Wang, Y., Liu, Z., Chen, C., Chen, B., Tian, X., et al., 2019. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 5, 575-580.
    Zhou, J., Liu, Y., Guo, X., Birchler, J.A., Han, F., Su, H., 2022. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20, 2051-2063.
    Zhu J. K., 2022. The future of gene-edited crops in China. Natl. Sci. Rev. 94, nwac063.
    Zhu, Y., Lin, Y., Fan, Y., Wang, Y., Li, P., Xiong, J., He, Y., Cheng, S., Ye, X., Wang, F., et al., 2023. CRISPR/Cas9-mediated restoration of Tamyb10 to create pre-harvest sprouting-resistant red wheat. Plant Biotechnol. J. 21, 665-667.
    Zong, Y., Liu, Y., Xue, C., Li, B., Li, X., Wang, Y., Li, J., Liu, G., Huang, X., Cao, X., et al., 2022. An engineered prime editor with enhanced editing efficiency in plants. Nat. Biotechnol. 40, 1394-1402.
    Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.L., Gao, C., 2018. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat. Biotechnol. 36, 950-953.
    Zong, Y., Wang, Y., Li, C., Zhang, R., Chen, K., Ran, Y., Qiu, J.L., Wang, D., Gao, C., 2017. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440.
    Zsogon, A., Cermak, T., Naves, E.R., Notini, M.M., Edel, K.H., Weinl, S., Freschi, L., Voytas, D.F., Kudla, J., Peres, L.E.P., 2018. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 36, 1211-1216.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (121) PDF downloads (16) Cited by ()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return