留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View

Xia Lin Yeguang Chen Anming Meng Xinhua Feng

Xia Lin, Yeguang Chen, Anming Meng, Xinhua Feng. Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View[J]. Journal of Genetics and Genomics, 2007, 34(1): 1-9. doi: 10.1016/S1673-8527(07)60001-0
Citation: Xia Lin, Yeguang Chen, Anming Meng, Xinhua Feng. Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View[J]. Journal of Genetics and Genomics, 2007, 34(1): 1-9. doi: 10.1016/S1673-8527(07)60001-0

doi: 10.1016/S1673-8527(07)60001-0

Termination of TGF-β Superfamily Signaling Through SMAD Dephosphorylation—A Functional Genomic View

More Information
    Corresponding author: E-mail address: xfeng@bcm.edu (Xinhua Feng)
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Derynck, R, Choy, et al.
    [2] Whitman, M Smads and early developmental signaling by the TGFbeta superfamily Genes Dev, 12 (1998),pp. 2445-2462
    [3] Hill, CS TGF-beta signalling pathways in early Xenopus development Curr Opin Genet Dev, 11 (2001),pp. 533-540
    [4] von Bubnoff, A, Cho, et al. Intracellular BMP signaling regulation in vertebrates: pathway or network? Dev Biol, 239 (2001),pp. 1-14
    [5] Blobe, GC, Schiemann, et al. Role of transforming growth factor beta in human disease N Engl J Med, 342 (2000),pp. 1350-1358
    [6] Derynck, R, Feng, et al. TGF-β receptor signaling Biochim Biophys Acta, 1333 (1997),pp. F105-F150
    [7] Freeman, JW, deArmond, et al. Alterations of cell signaling pathways in pancreatic cancer Front Biosci, 9 (2004),pp. 1889-1898
    [8] Rich, J, Borton, et al. Transforming growth factor-beta signaling in cancer Microsc Res Tech, 52 (2001),pp. 363-373
    [9] Siegel, PM, Massague, et al. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer Nat Rev Cancer, 3 (2003),pp. 807-821
    [10] Varga, J Antifibrotic therapy in scleroderma: extracellular or intracellular targeting of activated fibroblasts? Curr Rheumatol Rep, 6 (2004),pp. 164-170
    [11] Wakefield, LM, Roberts, et al. TGF-beta signaling: positive and negative effects on tumorigenesis Curr Opin Genet Dev, 12 (2002),pp. 22-29
    [12] Byfield, SD, Roberts, et al. Lateral signaling enhances TGF-beta response complexity Trends Cell Biol, 14 (2004),pp. 107-111
    [13] Derynck, R, Zhang, et al. Smad-dependent and Smad-independent pathways in TGF-beta family signalling Nature, 425 (2003),pp. 577-584
    [14] Feng, XH, Derynck, et al. Specificity and versatility in -β signaling through Smads Ann Rev Cell Dev Biol,, 21 (2005),pp. 659-693
    [15] Massagué, J, Wotton, et al. Transcriptional control by the TGF-beta/Smad signaling system Embo J, 19 (2000),pp. 1745-1754
    [16] Shi, Y, Massague, et al. Mechanisms of TGF-beta signaling from cell membrane to the nucleus Cell, 113 (2003),pp. 685-700
    [17] ten Dijke, P, Hill, et al. New insights into TGF-beta-Smad signalling Trends Biochem Sci, 29 (2004),pp. 265-273
    [18] Liu, F, Hata, et al. A human Mad protein acting as a BMP-regulated transcriptional activator Nature, 381 (1996),pp. 620-623
    [19] Watanabe, M, Masuyama, et al. Regulation of inracellular dynamics of Smad4 by its leucine-rich nuclear export signal EMBO Reports, 1 (2000),pp. 176-182
    [20] Xiao, Z, Liu, et al. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation Proc Natl Acad Sci USA, 97 (2000),pp. 7853-7858
    [21] Xu, L, Chen, et al. The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation Nat Cell Biol, 2 (2000),pp. 559-562
    [22] ten Dijke, P, Miyazono, et al. Signaling inputs converge on nuclear effectors in TGF-beta signaling Trends Biochem Sci, 25 (2000),pp. 64-70
    [23] Roberts, AB TGF-beta signaling from receptors to the nucleus Microbes Infect, 1 (1999),pp. 1265-1273
    [24] Feng, XH, Zhang, et al. The tumor suppressor Smad4/DPC4 and transcriptional adaptor CBP/p300 are coactivators for Smad3 in TGF-β -induced transcriptional activation Genes Dev, 12 (1998),pp. 2153-2163
    [25] Janknecht, R, Wells, et al. TGF-beta-stimulated cooperation of Smad proteins with the coactivators CBP/p300 Genes Dev, 12 (1998),pp. 2114-2119
    [26] Shen, X, Hu, et al. TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein Mol Biol Cell, 9 (1998),pp. 3309-3319
    [27] Akiyoshi, S, Inoue, et al. c-Ski acts as a transcriptional corepressor in transforming growth factor-beta signaling through interaction with Smads J Biol Chem, 274 (1999),pp. 35269-35277
    [28] Stroschein, SL, Wang, et al. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein Science, 286 (1999),pp. 771-774
    [29] Sun, Y, Liu, et al. Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling Mol Cell, 4 (1999),pp. 499-509
    [30] Wotton, D, Lo, et al. A Smad transcriptional corepressor Cell, 97 (1999),pp. 29-39
    [31] Yahata, T, de Caestecker, et al. The MSG1 non-DNA-binding transactivator binds to the p300/CBP coactivators, enhancing their functional link to the Smad transcription factors J Biol Chem, 275 (2000),pp. 8825-8834
    [32] Kim, RH, Wang, et al. A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction Genes Dev, 14 (2000),pp. 1605-1616
    [33] Hannon GJ, Beach D. p15null is a potential effector of TGF-β-induced cell cycle arrest. Nature, 371: 257 – 260.
    [34] Reynisdóttir, I, Polyak, et al. Kip/Cip and Ink4 cdk inhibitors cooperate to induce cell cycle arrest in response to -β Genes Dev, 9 (1995),pp. 1831-1845
    [35] Li, CY, Suardet, et al. Potential role of WAF1/Cip1/p21 as a mediator of TGF-beta cytoinhibitory effect J Biol Chem, 270 (1995),pp. 4971-4974
    [36] Feng, XH, Lin, et al. EMBO J, 19 (2000),pp. 5178-5193
    [37] Datto, MB, Li, et al. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism Proc Natl Acad Sci USA, 92 (1995),pp. 5545-5549
    [38] Pardali, K, Kurisaki, et al. J Biol Chem, 275 (2000),pp. 29244-29256
    [39] Seoane, J p21(WAF1/CIP1) at the switch between the antioncogenic and oncogenic faces of TGFbeta Cancer Biol Ther, 3 (2004),pp. 226-227
    [40] Scandura, JM, Boccuni, et al. Transforming growth factor beta-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation Proc Natl Acad Sci USA, 101 (2004),pp. 15231-15236
    [41] Alexandrow, MG, Kawabata, et al. Over-expression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1 Proc Natl Acad Sci USA, 92 (1995),pp. 3239-3243
    [42] Chen, CR, Kang, et al. E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression Cell, 110 (2002),pp. 19-32
    [43] Frederick, JP, Liberati, et al. Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element Mol Cell Biol, 24 (2004),pp. 2546-2559
    [44] Sasaki, T, Suzuki, et al. Lymphoid enhancer factor 1 makes cells resistant to transforming growth factor beta-induced repression of c-myc Cancer Res, 63 (2003),pp. 801-806
    [45] Warner, BJ, Blain, et al. Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway Mol Cell Biol, 19 (1999),pp. 5913-5922
    [46] Eppert, K, Scherer, et al. MADR2 maps to 18q21 and encodes a TGFβ - regulated MAD-related protein that is functionally mutated in colorectal carcinoma Cell, 86 (1996),pp. 543-552
    [47] Hahn, SA, Schutte, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1 Science, 271 (1996),pp. 350-353
    [48] Riggins, GJ, Thiagalingam, et al. Mad-related genes in the human Nature Genet, 13 (1996),pp. 347-349
    [49] Schutte, M, Hiruban, et al. DPC4 gene in various tumor types Cancer Res, 56 (1996),pp. 2527-2530
    [50] Thiagalingam, S, Lengauer, et al. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers Nat Genet, 13 (1996),pp. 343-346
    [51] Riggins, GJa, Kinzler, et al. Frequency of Smad gene mutations in human cancers Cancer Res, 57 (1997),pp. 2578-2580
    [52] Hoque, AT, Hahn, et al. DPC4 gene mutation in colitis associated neoplasia Gut, 40 (1997),pp. 120-122
    [53] Takagi, Y, Koumura, et al. Somatic alterations of the SMAD-2 gene in human colorectal cancers Br J Cancer, 78 (1998),pp. 1152-1155
    [54] Zhu, Y, Richardson, et al. Smad3 mutant mice develop metastatic colorectal cancer Cell, 94 (1998),pp. 703-714
    [55] Kim, BG, Li, et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer Nature, 441 (2006),pp. 1015-1019
    [56] Izzi, L, Attisano, et al. Regulation of the TGF-beta signalling pathway by ubiquitin-mediated degradation Oncogene, 23 (2004),pp. 2071-2078
    [57] Mulder, KM Role of Ras and Mapks in TGF-beta signaling Cytokine Growth Factor Rev, 11 (2000),pp. 23-35
    [58] Massague, J Integration of Smad and MAPK pathways: a link and a linker revisited Genes Dev, 17 (2003),pp. 2993-2997
    [59] Liu, F, Matsuura, et al. Inhibition of Smad antiproliferative function by CDK phosphorylation Cell, Cycle, 4 (2005)
    [60] Brown, JD, DiChiara, et al. MEKK-1, a component of the stress (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, can selectively activate Smad2-mediated transcriptional activation in endothelial cells J Biol Chem, 274 (1999),pp. 8797-8805
    [61] de Caestecker, M, Parks, et al. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases Genes Dev, 12 (1998),pp. 1587-1592
    [62] Engel, ME, McDonnell, et al. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription J Biol Chem, 274 (1999),pp. 37413-37420
    [63] Kretzschmar, M, Doody, et al. Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 Nature, 389 (1997),pp. 618-622
    [64] Kretzschmar, M, Doody, et al. A mechanism of repression of TGF-beta/Smad signaling by oncogenic Ras Genes Dev, 13 (1999),pp. 804-816
    [65] Pera, EM, Ikeda, et al. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction Genes Dev, 17 (2003),pp. 3023-3028
    [66] Kamaraju, AK, Roberts, et al. J Biol Chem, 280 (2005),pp. 1024-1036
    [67] Matsuura, I, Denissova, et al. Cyclin-dependent kinases regulate the antiproliferative function of Smads Nature, 430 (2004),pp. 226-231
    [68] Griswold-Prenner, I, Kamibayashi, et al. Physical and functional interactions between type I transforming growth factor beta receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A Mol Cell Biol, 18 (1998),pp. 6595-6604
    [69] Shi, W, Sun, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGF-beta type I receptor J Cell Biol, 164 (2004),pp. 291-300
    [70] Lin, X, Liang, et al. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in TGF-beta signaling J Biol Chem, 275 (2000),pp. 36818-36822
    [71] Liang, YY, Lin, et al. dSmurf selectively degrades decapentaplegic-activated MAD, and its overexpression disrupts imaginal disc development J Biol Chem, 278 (2003),pp. 26307-26310
    [72] Kavsak, P, Rasmussen, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation Mol Cell, 6 (2000),pp. 1365-1375
    [73] Komuro, A, Imamura, et al. Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1) Oncogene, 23 (2004),pp. 6914-6923
    [74] Kuratomi, G, Komuro, et al. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor Biochem J, 386 (2005),pp. 461-470
    [75] Seo, SR, Lallemand, et al. The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation Embo J, 23 (2004),pp. 3780-3792
    [76] Zhang, Y, Chang, et al. Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase Proc Natl Acad Sci USA, 98 (2001),pp. 974-979
    [77] Zhu, H, Kavsak, et al. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation Nature, 400 (1999),pp. 687-693
    [78] Feng, XH, Lin, et al.
    [79] Liang, M, Melchior, et al. Regulation of Smad4 sumoylation and transforming growth factor-beta signaling by protein inhibitor of activated STAT1 J Biol Chem, 279 (2004),pp. 22857-22865
    [80] Lin, X, Liang, et al. Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4 J Biol Chem, 278 (2003),pp. 18714-18719
    [81] Lin, X, Liang, et al. SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4 J Biol Chem, 278 (2003),pp. 31043-31048
    [82] Ohshima, T, Shimotohno, et al. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4 J Biol Chem, 278 (2003),pp. 50833-50842
    [83] Long, J, Wang, et al. Repression of Smad4 transcriptional activity by SUMO modification Biochem J, 379 (2004),pp. 23-29
    [84] Lee, PS, Chang, et al. Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling J Biol Chem, 278 (2003),pp. 27853-27863
    [85] Imoto, S, Sugiyama, et al. The RING domain of PIASy is involved in the suppression of bone morphogenetic protein-signaling pathway Biochem Biophys Res Commun, 319 (2004),pp. 275-282
    [86] Liang, M, Liang, et al. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2 Mol Cell Biol, 24 (2004),pp. 7524-7537
    [87] Inman, GJ, Nicolas, et al. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity Mol Cell, 10 (2002),pp. 283-294
    [88] Nicolas, FJ, De Bosscher, et al. Analysis of Smad nucleocytoplasmic shuttling in living cells J Cell Sci, 117 (2004),pp. 4113-4125
    [89] Pierreux, CE, Nicolas, et al. Transforming growth factor beta-independent shuttling of Smad4 between the cytoplasm and nucleus Mol Cell Biol, 20 (2000),pp. 9041-9054
    [90] Xiao, Z, Liu, et al. Importin β mediates nuclear translocation of Smad 3 J Biol Chem, 275 (2000),pp. 23425-23428
    [91] Xiao, Z, Watson, et al. Nucleocytoplasmic shuttling of Smad1 conferred by its nuclear localization and nuclear export signals J Biol Chem, 276 (2001),pp. 39404-39410
    [92] Xiao, Z, Brownawell, et al. A novel nuclear export signal in Smad1 is essential for its signaling activity J Biol Chem, 278 (2003),pp. 34245-34252
    [93] Xiao, Z, Latek, et al. An extended bipartite nuclear localization signal in Smad4 is required for its nuclear import and transcriptional activity Oncogene, 22 (2003),pp. 1057-1069
    [94] Xu, L, Kang, et al. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus Mol Cell, 10 (2002),pp. 271-282
    [95] Xu, L, Alarcon, et al. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import J Biol Chem, 278 (2003),pp. 42569-42577
    [96] Reguly, T, Wrana, et al. In or out? The dynamics of Smad nucleocytoplasmic shuttling Trends Cell Biol, 13 (2003),pp. 216-220
    [97] Xu, L, Massague, et al. Nucleocytoplasmic shuttling of signal transducers Nat Rev Mol Cell Biol, 5 (2004),pp. 209-219
    [98] Alonso, A, Sasin, et al. Protein tyrosine phosphatases in the human genome Cell, 117 (2004),pp. 699-711
    [99] Cohen, PTW
    [100] Gallego, M, Virshup, et al. Protein serine/threonine phosphatases: life, death, and sleeping Curr Opin Cell Biol, 17 (2005),pp. 197-202
    [101] Lin, X, Duan, et al. PPM1A functions as a Smad phosphatase to terminate TGFβ signaling Cell, 125 (2006),pp. 915-928
    [102] Akhurst, RJ TGF beta signaling in health and disease Nat Genet, 36 (2004),pp. 790-792
    [103] Boileau, C, Jondeau, et al. Molecular genetics of Marfan sydrome Curr Opin Cardiol, 20 (2005),pp. 194-200
    [104] Roberts, AB, Wakefield, et al. The two faces of transforming growth factor beta in carcinogenesis Proc Natl Acad Sci USA, 100 (2003),pp. 8621-8623
    [105] Waite, KA, Eng, et al. From developmental disorder to heritable cancer: it's all in the BMP/TGF-beta family Nat Rev Genet, 4 (2003),pp. 763-773
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  27
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-09-25
  • 录用日期:  2006-10-31
  • 网络出版日期:  2007-04-18
  • 刊出日期:  2007-01-20

目录

    /

    返回文章
    返回