留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characterization of Genetic Polymorphism of Novel MHC B-LB II Alleles in Chinese Indigenous Chickens

Rifu Xu Kui Li Guohong Chen Hui Xu Bayangzong Qiang Changchun Li Bang Liu

Rifu Xu, Kui Li, Guohong Chen, Hui Xu, Bayangzong Qiang, Changchun Li, Bang Liu. Characterization of Genetic Polymorphism of Novel MHC B-LB II Alleles in Chinese Indigenous Chickens[J]. Journal of Genetics and Genomics, 2007, 34(2): 109-118. doi: 10.1016/S1673-8527(07)60012-5
Citation: Rifu Xu, Kui Li, Guohong Chen, Hui Xu, Bayangzong Qiang, Changchun Li, Bang Liu. Characterization of Genetic Polymorphism of Novel MHC B-LB II Alleles in Chinese Indigenous Chickens[J]. Journal of Genetics and Genomics, 2007, 34(2): 109-118. doi: 10.1016/S1673-8527(07)60012-5

doi: 10.1016/S1673-8527(07)60012-5

Characterization of Genetic Polymorphism of Novel MHC B-LB II Alleles in Chinese Indigenous Chickens

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Bloom, SE, Bacon, et al. Linkage of the major histocompatibility (B) complex and the nucleolar organizer in the chicken. Assignment to a microchromosome Journal of Heredity, 76 (1985),pp. 146-154
    [2] Guillemot, F, Billault, et al. A molecular map of the chicken major histocompatibility complex: the class β?genes are closely-linked to the class I genes and the nucleolar organizer EMBO J, 7 (1988),pp. 2775-2785
    [3] Bourlet, Y, Behar, et al. Isolation of chicken major histocompatibility complex class II (B-L) beta chain sequences: comparison with mammalian beta chains and expression in lymphoid organs EMBO J, 7 (1988),pp. 1031-1039
    [4] Miller, MM, Goto, et al. Proceedings of National Academy of Science USA, 93 (1996),pp. 3958-3962
    [5] Kaufman, J, Volk, et al. A “minimal essential Mhc” and an “unrecognized Mhc”: two extremes in selection for polymorphism Immunology Reviews, 143 (1995),pp. 63-88
    [6] Zoorob, R, Bernot, et al. Chicken major histocompatibility complex class II B genes: analysis of interallelic and interlocus sequence variance European Journal of Immunology, 23 (1993),pp. 1139-1145
    [7] Brown, JH, Jardetzky, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 Nature, 364 (1993),pp. 33-39
    [8] Hedrick, PW Evolutionary genetics of the major histocompatibility complex American Naturalist, 143 (1994),pp. 945-964
    [9] Penn, DJ, Potts, et al. The evolution of mating preferences and major histocompatibility complex genes American Naturalist, 153 (1999),pp. 145-164
    [10] Nasir, L, Ndiaye, et al. Sequence polymorphism in the bovine major histocompatibility complex DQB loci Animal Genetics, 28 (1997),pp. 441-445
    [11] Snibson, KJ, Maddox, et al. Allelic variation of ovine MHC class II DQA1 and DQA2 genes Animal Genetics, 29 (1998),pp. 356-362
    [12] De, S, Singh, et al. MHC-DRB exon 2 allele polymorphism in Indian river buffalo (Bubalus bubalis) Animal Genetics, 33 (2002),pp. 215-219
    [13] Zhou, H, Hickford, et al. Allelic polymorphism in the ovine DQA1 gene Journal of Animal Science, 82 (2004),pp. 8-16
    [14] Bodmer, JG, Marsh, et al. Nomenclature for factors of the HLA system Tissue Antigens, 46 (1995),pp. 1-18
    [15] Davies, CJ, Andersson, et al. Nomenclature for factors of the BoLA system, 1996: report of the ISAG BoLA Nomenclature Committee Animal Genetics, 28 (1997),pp. 159-168
    [16] Andersson, L, Sigurdardottir, et al. Evolution of MHC polymorphism: extensive sharing of polymorphic sequence motifs between human and bovine DRB alleles Immunogenetics, 33 (1991),pp. 188-193
    [17] Mikko, S, Spencer, et al. Journal of Heredity, 88 (1997),pp. 499-503
    [18] Sena, L, Schneider, et al. Polymorphisms in MHC-DRA and -DRB alleles of water buffalo (Bubalus bubalis) reveal different features from cattle DR alleles Animal Genetics, 34 (2003),pp. 1-10
    [19] Simonsen, M, Crone, et al. The MHC haplotypes of the chicken Immunogenetics, 16 (1982),pp. 513-532
    [20] Briles, WE, Bumstead, et al. Nomenclature for chicken major histocompatibility (B) complex Immunogenetics, 15 (1982),pp. 441-447
    [21] Briles, WE, Briles, et al. Identification of haplotypes of the chicken major histocompatibility complex (B) Immunogenetics, 15 (1982),pp. 449-459
    [22] Briles, WE, Goto, et al. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex Immunogenetics, 37 (1993),pp. 408-414
    [23] Zoorob, R, Behar, et al. Organization of a functional chicken class II B gene Immunogenetics, 31 (1990),pp. 179-187
    [24] Lakshmana, N, Gavora, et al. Major histocompatibility complex class ? DNA polymorphisms in chicken strains selected for Marek's disease resistance and egg production or egg production alone Poultry Science, 76 (1997),pp. 1517-1523
    [25] Li, L, Johnson, et al. Molecular characterizaton of major histocompatibility complex (B) haplotypes in broiler chickens Animal Genetics, 28 (1997),pp. 258-267
    [26] Li, L, JohnsonL, et al. The MHC of a broiler chicken line: serology, B-G genotypes, and B-F/B-LB sequences Immunogenetics, 49 (1999),pp. 215-224
    [27] Zhang, D, O'Keefe, et al. A PCR method for typing B-Lβ? family (class ? MHC) alleles in broiler chickens Animal Genetics, 30 (1999),pp. 109-119
    [28] Jacob, JP, Milne, et al. The major and a minor class II beta-chain (B-LB) gene flank the Tapasin gene in the B-F/B-L region of the chicken major histocompatibility complex Immunogenetics, 51 (2000),pp. 138-147
    [29] Livant, EJ, Zhang, et al. Three new MHC haplotypes in broiler breeder chickens Animal Genetics, 32 (2001),pp. 123-131
    [30] Iglesias, GM, Aoria, et al. Genotypic variability at the major histocompatibility complex (B and Rfp-Y) in Comperos broiler chickens Animal Genetics, 34 (2003),pp. 88-95
    [31] Xu, RF, Li, et al. Sequence Comparison of MHC Class II β (exon 2) and Phylogenetic Relationship between Poultry and Mammalian Agricultural Sciences in China, 4 (2005),pp. 299-309
    [32] Xu, RF
    [33] Sambrook, J, Fritsch, et al.
    [34] Kumar, S, Tamura, et al.
    [35] Nei, M, Gojobori, et al. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions Molecular Biological Evolution, 3 (1986),pp. 418-426
    [36] Lynch, M, Crease, et al. The analysis of population survey data on DNA sequence variation Molecular Biological Evolution, 79 (1990),pp. 377-394
    [37] Jukes, TH, Cantor, et al.
    [38] Rozas, J, Sánchez-DelBarrio, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods Bioinformatics, 19 (2003),pp. 2496-2497
    [39] International Chicken Polymorphism Map Consortium A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms Nature, 432 (2004),pp. 717-722
    [40] Nei, M
    [41] Hughes, AL
    [42] International Chicken Polymorphism Map Consortium A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms Nature, 432 (2004),pp. 695-716
    [43] Begun, DJ, Aquadro, et al. Nature, 356 (1992),pp. 519-520
    [44] Nachman, MW Single nucleotide polymorphisms and recombination rate in humans Trends Genet, 17 (2001),pp. 481-485
    [45] Shia, YC, Bradshaw, et al. Polymerase chain reaction based genotyping for characterization of SLA-DQB and SLA-DRB alleles in domestic pigs Anim Genet, 26 (1995),pp. 91-100
    [46] Paliakasis, K, Routsias, et al. Novel structural features of the human histocompatibility molecules HLA-DQ as revealed by modeling based on the published structure of the related molecule HLA-DR J Struct Biol, 117 (1996),pp. 145-163
    [47] Seidl, C, Koch, et al. HLA-DR/DQ/DP interactions in rheumatoid arthritis Eur J Immunogenet, 24 (1997),pp. 365-376
    [48] Toussirot, E, Auge, et al. HLA-DRB1 alleles and shared amino acid sequences in disease susceptibility and severity in patients from eastern France with rheumatoid arthritis J Rheumatol, 26 (1999),pp. 1446-1451
    [49] Madden, DR, Gorga, et al. The three-dimensional structure of HLA-B27 at 2.1 A resolution suggests a general mechanism for tight peptide binding to MHC Cell, 70 (1992),pp. 1035-1048
    [50] Cao, MD, Qin, et al.
    [51] Chen, HL, Li, et al.
    [52] Rietsch, A, Bessette, et al. Reduction of the periplasmic disulfide bond isomerase, DsbC, occurs by passage of electrons from cytoplasmic thioredoxin J Bacteriol, 179 (1997),pp. 6602-6608
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-03-24
  • 录用日期:  2006-04-30
  • 网络出版日期:  2007-04-18
  • 刊出日期:  2007-02-20

目录

    /

    返回文章
    返回