留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular Characterization of Cotton 14-3-3L Gene Preferentially Expressed During Fiber Elongation

Haiyan Shi Xiulan Wang Dengdi Li Wenkai Tang Hong Wang Wenliang Xu Xuebao Li

Haiyan Shi, Xiulan Wang, Dengdi Li, Wenkai Tang, Hong Wang, Wenliang Xu, Xuebao Li. Molecular Characterization of Cotton 14-3-3L Gene Preferentially Expressed During Fiber Elongation[J]. Journal of Genetics and Genomics, 2007, 34(2): 151-159. doi: 10.1016/S1673-8527(07)60016-2
Citation: Haiyan Shi, Xiulan Wang, Dengdi Li, Wenkai Tang, Hong Wang, Wenliang Xu, Xuebao Li. Molecular Characterization of Cotton 14-3-3L Gene Preferentially Expressed During Fiber Elongation[J]. Journal of Genetics and Genomics, 2007, 34(2): 151-159. doi: 10.1016/S1673-8527(07)60016-2

doi: 10.1016/S1673-8527(07)60016-2

Molecular Characterization of Cotton 14-3-3L Gene Preferentially Expressed During Fiber Elongation

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Moore, BW, Perez, et al.
    [2] Ferl, RJ 14-3-3 proteins: regulation of signal-induced events Physiol Plant, 120 (2004),pp. 173-178
    [3] Dougherty, MK, Morrison, et al. Unlocking the code of 14-3-3 J Cell Sci, 117 (2004),pp. 1875-1884
    [4] Alam, R, Hachiya, et al. cDNA cloning and characterization of mitochondrial import stimulation factor (MSF) purified from rat liver. cytosol J Biochem, 116 (1994),pp. 416-425
    [5] Jackson-Constan, D, Akita, et al. Molecular chaperones involved in chloroplast protein import Biochim Biophys Acta, 1541 (2001),pp. 102-113
    [6] May, T, Soll, et al. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants Plant Cell, 12 (2000),pp. 53-63
    [7] Tzivion, G, Avruch, et al. 14-3-3 Proteins: active cofactors incellular regulation by serine/threonine phosphorylation J Biol Chem, 277 (2002),pp. 3061-3064
    [8] Cotelle, V, Meek, et al. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells EMBO J, 19 (2000),pp. 2869-2876
    [9] Tzivion, G, Shen, et al. 14-3-3 proteins: bringing new definitions to scaffolding Oncogene, 20 (2001),pp. 6331-6338
    [10] Fu, H, Subramanian, et al. 14-3-3 proteins: structure, function, and regulation Annu Rev Pharmacol Toxicol, 40 (2000),pp. 617-647
    [11] van den Wijngaard, PW, Sinnige, et al. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root Plant J, 41 (2005),pp. 43-55
    [12] Rosenquist, M, Alsterfjord, et al. Plant Physiol, 127 (2001),pp. 142-149
    [13] Daugherty, CJ, Rooney, et al. Molecular organization and tissue-specific expression of an Arabidopsis 14-3-3 gene Plant Cell, 8 (1996),pp. 1239-1248
    [14] Brandt, J, Christensen, et al. A pathogen-induced gene of barley encodes a protein showing high similarity to a protein kinase regulator Plant Cell, 2 (1992),pp. 815-820
    [15] Simone de, FM, Gerda, et al. 14-3-3 isoforms and pattern formation during barley microspore embryogenesis Exp Bot, 54 (2003),pp. 1033-1043
    [16] Testerink, C, van der Meulen, et al. Differences in spatial expression between 14-3-3 isoforms in germinatingbarley embryos Plant Physiol, 121 (1999),pp. 81-87
    [17] van Zeijl, MJ, Testerink, et al. Subcellular differences in post-translational modification of barley 14-3-3 proteins FEBS Letters, 473 (2000),pp. 292-296
    [18] Sehnke, PC, Chung, et al. Regulation of starch accumulation by granule-associated plant 14-3-3 proteins Proc Natl Acad Sci USA, 98 (2001),pp. 765-770
    [19] Sehnke, PC, DeLille, et al. Consummating signal transduction: the role of 14-3-3 proteins in thecompletion of signal-induced transitions in protein activity Plant Cell, 14 (2002),pp. S339-S354
    [20] Prescha, A, Biernat, et al. Quantitative and qualitative analysis of lipids in genetically modified potato tubers with varying rates of 14-3-3 protein synthesis Nahrung, 46 (2002),pp. 179-183
    [21] Swiedrych, A, Prescha, et al. Repression of the 14-3-3 gene affects the amino acid and mineral composition of potato tubers J Agric Food Chem, 50 (2002),pp. 2137-2141
    [22] Szopa, J Transgenic14-3-3 isoforms in plants: the metabolite profiling of repressed 14-3-3 protein synthesis in transgenic potato plants Biochem Soc Trans, 30 (2002),pp. 405-410
    [23] Lukaszewicz, M, Matysiak-Kata, et al. 14-3-3 Protein regulation of the antioxidant capacity of transgenic potato tubers Plant Sci, 163 (2002),pp. 125-130
    [24] Wilczynski, G, Kulma, et al. The expression of 14-3-3 isoforms in potato is developmentally regulated J Plant Physiol, 153 (1998),pp. 118-126
    [25] Yan, JQ, He, et al. Plant Cell Physiol, 45 (2004),pp. 1007-1014
    [26] Li, XB, Cai, et al. Plant Physiol, 130 (2002),pp. 666-674
    [27] Thomas, FS, Joaquin, et al. Plant Cell, 10 (1998),pp. 837-847
    [28] Thorsten, H, Nico, et al. Transcriptional activation by the PHD finger is inhibited through an adjacent leucine zipper that binds 14-3-3 proteins Nucleic Acids Res, 28 (2000),pp. 3542-3550
    [29] Aitken, A, Collinge, et al. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins Trends Biochem Sci, 17 (1992),pp. 498-501
    [30] van Heusden, GP, Griffiths, et al. Eur J Biochem, 229 (1995),pp. 45-53
    [31] Chung, HJ, Sehnke, et al. The 14-3-3 proteins: cellular regulators of plant metabolism Trend Plant Sci, 4 (1999),pp. 367-371
    [32] Voigt, J, Frank, et al. 14-3-3 proteins are constituents of the insoluble glycoprotein framework of the chlamydomonas cell wall Plant Cell, 15 (2003),pp. 1399-1413
    [33] Aitken, A Functional specificity in 14-3-3 isoform interactions through dimer formation and phosphorylation. Chromosome location of mammalian isoforms and variants Plant Mol Biol, 50 (2002),pp. 993-1010
    [34] Dougherty, MK, Morrison, et al. Unlocking the code of 14-3-3 J Cell Sci, 117 (2004),pp. 1875-1884
  • 加载中
计量
  • 文章访问数:  129
  • HTML全文浏览量:  41
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-02-21
  • 录用日期:  2006-03-10
  • 网络出版日期:  2007-04-18
  • 刊出日期:  2007-02-20

目录

    /

    返回文章
    返回