留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genome-wide Detection and Analysis of Alternative Splicing for Nucleotide Binding Site-Leucine-Rich Repeats Sequences in Rice

Lianfeng Gu Rongfa Guo

Lianfeng Gu, Rongfa Guo. Genome-wide Detection and Analysis of Alternative Splicing for Nucleotide Binding Site-Leucine-Rich Repeats Sequences in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 247-257. doi: 10.1016/S1673-8527(07)60026-5
Citation: Lianfeng Gu, Rongfa Guo. Genome-wide Detection and Analysis of Alternative Splicing for Nucleotide Binding Site-Leucine-Rich Repeats Sequences in Rice[J]. Journal of Genetics and Genomics, 2007, 34(3): 247-257. doi: 10.1016/S1673-8527(07)60026-5

doi: 10.1016/S1673-8527(07)60026-5

Genome-wide Detection and Analysis of Alternative Splicing for Nucleotide Binding Site-Leucine-Rich Repeats Sequences in Rice

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Gilbert, W Why genes in pieces? Nature, 271 (1978),p. 501
    [2] Kim, N, Shin, et al. ASmodeler: gene modeling of alternative splicing from genomic alignment of mRNA, EST and protein sequences Nucleic Acids Res, 32 (2004),pp. W181-W186
    [3] Cusack, BP, Wolfe, et al. Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons Mol Biol Evol, 22 (2005),pp. 2198-2208
    [4] Florea, L Bioinformatics of alternative splicing and its regulation Brief Bioinform, 7 (2006),pp. 55-69
    [5] Graveley, BR Alternative splicing: Increasing diversity in the proteomic world Trends Genet, 17 (2001),pp. 100-107
    [6] Maniatis, T, Tasic, et al. Alternative pre-mRNA splicing and proteome expansion in metazoans Nature, 418 (2002),pp. 236-243
    [7] Black, DL Mechanisms of alternative pre-messenger RNA splicing Annu Rev Bio Chem, 72 (2003),pp. 291-336
    [8] Modrek, B, Resch, et al. Genome-wide detection of alternative splicing in expressed sequences of human genes Nucleic Acids Res, 29 (2001),pp. 2850-2859
    [9] Johnson, JM, Castle, et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays Science, 302 (2003),pp. 2141-2144
    [10] Okazaki, Y, Furuno, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs Nature, 420 (2002),pp. 563-573
    [11] Holste, D, Huo, et al. HOLLYWOOD: a comparative relational database of alternative splicing Nucleic Acids Res, 34 (2006),pp. D56-D62
    [12] Kim, N, Shin, et al. ECgene: genome-based EST clustering and gene modeling for alternative splicing Genome Res, 15 (2005),pp. 566-576
    [13] Gopalan, V, Tan, et al. Xpro: database of eukaryotic protein-encoding genes Nucleic Acids Res, 32 (2004),pp. D59-D63
    [14] Thanaraj, TA, Stamm, et al. ASD: the alternative splicing database Nucleic Acids Res, 32 (2004),pp. D64-D69
    [15] Pospisil, H, Herrmann, et al. EASED: Extended alternatively spliced EST database Nucleic Acids Res, 32 (2004),pp. D70-D74
    [16] Lee, C, Atanelov, et al. ASAP: the alternative splicing annotation project Nucleic Acids Res, 31 (2003),pp. 101-105
    [17] Huang, HD, Horng, et al. ProSplicer: a database of putative alternative splicing information derived from protein, mRNA and expressed sequence tag sequence data Genome Biol, 4 (2003),pp. R29.1-R29.7
    [18] Fehlbaum, P, Guihal, et al. A microarray configuration to quantify expression levels and relative abundance of splice variants Nucleic Acids Res, 33 (2005),pp. e47.1-e47.11
    [19] Kim, N, Lim, et al. ASePCR: alternative splicing electronic RT-PCR in multiple tissues and organs Nucleic Acids Res, 33 (2005),pp. W681-W685
    [20] Huang, YH, Chen, et al. PALS db: putative alternative splicing database Nucleic Acids Res, 30 (2002),pp. 186-190
    [21] Lewis, BP, Green, et al. Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans Proc Natl Acad Sci USA, 100 (2003),pp. 189-192
    [22] Croft, L, Schandorff, et al. ISIS, the intron information system reveals the high frequency of alternative splicing in the human genome Nature Genet, 24 (2000),pp. 340-341
    [23] Modrek, B, Lee, et al. A genomic view of alternative splicing Nature Genet, 30 (2002),pp. 13-19
    [24] Florea, L, Hartzell, et al. A computer program for aligning a cDNA sequence with a genomic DNA sequence Genome Res, 8 (1998),pp. 967-974
    [25] Florea, L, Francesco, et al. Gene and alternative splicing annotation with AIR Genome Res, 15 (2005),pp. 54-66
    [26] Wheelan, SJ, Church, et al. Spidey: a tool for mRNA-to-genomic alignments Genome Res, 11 (2001),pp. 1952-1957
    [27] Kent, WJ BLAT-the BLAST-like alignment tool Genome Res, 12 (2002),pp. 656-664
    [28] Mott, R EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA Comput Appl Biosci, 13 (1997),pp. 477-478
    [29] Zhang, M, Gish, et al. Improved spliced alignment from an information theoretic approach Bioinformatics, 22 (2006),pp. 13-20
    [30] Usuka, J, Zhu, et al. Optimal spliced alignment of homologous cDNA to a genomic DNA template Bioinformatics, 16 (2000),pp. 203-211
    [31] Lee, BT, Tan, et al. MGAlignIt: a web service for the alignment of mRNA/EST and genomic sequences Nucleic Acids Res, 31 (2003),pp. 3533-3536
    [32] Kikuchi, S, Satoh, et al. Collection, mapping, and annotation of over 28 000 cDNA clones from japonica rice Science, 30 (2003),pp. 376-379
    [33] Quackenbush, J, Cho, et al. The TIGR Gene Indices: Analysis of gene transcript sequences in highly sampled eukaryotic species Nucleic Acids Res, 29 (2001),pp. 159-164
    [34] Bairoch, A, Apweiler, et al. The universal protein resource (UniProt) Nucleic Acids Res, 33 (2005),pp. D154-D159
    [35] Droc, G, Ruiz, et al. OryGenesDB: a database for rice reverse genetics Nucleic Acids Res, 34 (2006),pp. D736-D740
    [36] Crooks, GE, Hon, et al. WebLogo: A sequence logo generator Genome Res, 14 (2004),pp. 1188-1190
    [37] Schultz, J, Milpetz, et al. SMART, a simple modular architecture research tool: Identification of signaling domains Proc Natl Acad Sci USA, 95 (1998),pp. 5857-5864
    [38] Zhou, Y, Zhou, et al. Database and analyses of known alternatively spliced genes in plants Genomics, 82 (2003),pp. 584-595
    [39] Haas, BJ, Volfovsky, et al. Full-length messenger RNA sequences greatly improve genome annotation Genome Biol, 3 (2002)
    [40] Iida, K, Seki, et al. Genome-wide analysis of alternative pre-mRNA splicing in Arabidopsis thaliana based on full-length cDNA sequences Nucleic Acids Res, 32 (2004),pp. 5096-5103
    [41] Hulbert, SH, Webb, et al. Resistance gene complexes: evolution and utilization Annu Rev Phytopathol, 39 (2001),pp. 285-312
    [42] Liang, F, Holt, et al. Gene index analysis of the human genome estimates approximately 120,000 genes Nature Genet, 25 (2000),pp. 239-240
    [43] Sorek, R, Shemesh, et al. A non-EST-based method for exon-skipping prediction Genome Res, 14 (2004),pp. 1617-1623
    [44] Rogozin, IB, Milanesi, et al. Analysis of donor splice sites in different eukaryotic organisms J Mol Evol, 45 (1997),pp. 50-59
    [45] Haas, BJ, Delcher, et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies Nucleic Acids Res, 31 (2003),pp. 5654-5666
    [46] Lia, H, Zhang, et al. Screening for and genetic analysis on T-DNA-inserted mutant pool in rice Acta Genetica Sinica, 33 (2006),pp. 319-329
    [47] Xue, YB, Li, et al. Recent highlights of the china rice functional genomics program Trends Genet, 19 (2003),pp. 390-394
    [48] Ladd, AN, Cooper, et al. Finding signals that regulate alternative splicing in the post-genomic era Genome Biol, 3 (2002)
    [49] Ladd, AN, Nguyen, et al. CELF6, a member of the CELF family of RNA-binding proteins, regulates muscle-specific splicing enhancer-dependent alternative splicing J Biol Chem, 279 (2004),pp. 17756-17764
    [50] Mondragon-Palomino, M, Meyers, et al. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana Genome Res, 12 (2002),pp. 1305-1315
    [51] Michelmore, RW, Meyers, et al. Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process Genome Res, 8 (1998),pp. 1113-1130
    [52] Chen, FC, Wang, et al. Alternatively and constitutively spliced exons are subject to different evolutionary forces Mol Biol Evol, 23 (2006),pp. 675-682
    [53] Clark, F, Thanaraj, et al. Categorization and characterization of transcript-confirmed constitutively and alternatively spliced introns and exons from human Hum Mol Genet, 11 (2002),pp. 451-464
    [54] Wilkie, GS, Dickson, et al. Regulation of mRNA translation by 5′-and 3′-UTR-binding factors Trends Biochem Sci, 28 (2003),pp. 182-188
    [55] Ayliffe, MA, Lagudah, et al. Molecular genetics of disease resistance in cereals Ann Bot, 94 (2004),pp. 765-773
    [56] Meyers, BC, Kozik, et al. Genome-wide analysis of NBS-LRR-Encoding genes in Arabidopsis Plant Cell, 15 (2003),pp. 809-834
  • 加载中
计量
  • 文章访问数:  104
  • HTML全文浏览量:  27
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-05-07
  • 录用日期:  2006-08-03
  • 网络出版日期:  2007-05-09
  • 刊出日期:  2007-03-20

目录

    /

    返回文章
    返回