留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Future impact of integrated high-throughput methylome analyses on human health and disease

Lee M Butcher Stephan Beck

Lee M Butcher, Stephan Beck. Future impact of integrated high-throughput methylome analyses on human health and disease[J]. Journal of Genetics and Genomics, 2008, 35(7): 391-401. doi: 10.1016/S1673-8527(08)60057-0
Citation: Lee M Butcher, Stephan Beck. Future impact of integrated high-throughput methylome analyses on human health and disease[J]. Journal of Genetics and Genomics, 2008, 35(7): 391-401. doi: 10.1016/S1673-8527(08)60057-0

doi: 10.1016/S1673-8527(08)60057-0

Future impact of integrated high-throughput methylome analyses on human health and disease

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Barski, A., Cuddapah, S., Cui, K. et al. High-resolution profiling of histone methylations in the human genome Cell, 129 (2007),pp. 823-837
    [2] Baylin, S.B., Herman, J.G. DNA hypermethylation in tumorigenesis: Epigenetics joins genetics Trends Genet., 16 (2000),pp. 168-174
    [3] Beck, S., and Rakyan, V.K. (2008). The methylome: Approaches for global DNA methylation profiling. Trends Genet. doi:10.1016/j.tig. 2008.01.006.
    [4] Bentley, D.R. Whole-genome resequencing Curr. Opin. Genet. Dev., 16 (2006),pp. 545-552
    [5] Bird, A. DNA methylation patterns and epigenetic memory Genes Dev., 16 (2002),pp. 6-21
    [6] Bird, A.P. CpG-rich islands and the function of DNA methylation Nature, 321 (1986),pp. 209-213
    [7] Boyer, L.A., Plath, K., Zeitlinger, J. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells Nature, 441 (2006),pp. 349-353
    [8] Cameron, E.E., Bachman, K.E., Myohanen, S. et al. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer Nat. Genet., 21 (1999),pp. 103-107
    [9] Caspi, A., McClay, J., Moffitt, T.E. et al. Role of genotype in the cycle of violence in maltreated children Science, 297 (2002),pp. 851-854
    [10] Caspi, A., Sugden, K., Moffitt, T.E. et al. Science, 301 (2003),pp. 386-389
    [11] Caspi, A., Williams, B., Kim-Cohen, J. et al. Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18860-18865
    [12] Ching, T.T., Maunakea, A.K., Jun, P. et al. Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3 Nat. Genet., 37 (2005),pp. 645-651
    [13] Cokus, S.J., Feng, S., Zhang, X. et al. Nature, 452 (2008),pp. 215-219
    [14] Collins, F.S., Green, E.D., Guttmacher, A.E. et al. A vision for the future of genomics research Nature, 422 (2003),pp. 835-847
    [15] Down, T.A., Rakyan, V.K., Turner, D.J., Flicek, P., Li, H., Kulesha, E., Gräf, S., Johnson, N., Herrero, J., Tomasello, M., Thorne, N.P., Bäckdahl, L., Herberth, M., Howe, K.L., Jackson, D.K., Miretti, M., Marioni, J.C., Birney, E., Hubbard, T.J.P., Durbin, R., Tavaré, S., and Beck, S. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat. Biotechnol. In Press.
    [16] Eads, C.A., Danenberg, K.D., Kawakami, K. et al. MethyLight: A high-throughput assay to measure DNA methylation Nucleic Acids Res., 28 (2000),p. e32
    [17] Eckhardt, F., Lewin, J., Cortese, R. et al. DNA methylation profiling of human chromosomes 6, 20 and 22 Nat. Genet., 38 (2006),pp. 1378-1385
    [18] Ehrich, M., Nelson, M.R., Stanssens, P. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 15785-15790
    [19] Erlanson, D.A., Chen, L., Verdine, G.L. DNA methylation through a locally unpaired intermediate J. Am. Chem. Soc., 115 (1993),pp. 12583-12584
    [20] Feinberg, A.P., Vogelstein, B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts Nature, 301 (1983),pp. 89-92
    [21] Frommer, M., McDonald, L.E., Millar, D.S. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 1827-1831
    [22] Gabriel, S.B., Schaffner, S.F., Nguyen, H. et al. The structure of haplotype blocks in the human genome Science, 296 (2002),pp. 2225-2229
    [23] Galm, O., Herman, J.G., Baylin, S.B. The fundamental role of epigenetics in hematopoietic malignancies Blood Rev., 20 (2006),pp. 1-13
    [24] Gitan, R.S., Shi, H., Chen, C.M. et al. Methylation-specific oligonucleotide microarray: A new potential for high-throughput methylation analysis Genome Res., 12 (2002),pp. 158-164
    [25] Goldstein, M., Meller, I., Orr-Urtreger, A. Genes Chromosomes Cancer, 46 (2007),pp. 1028-1038
    [26] Grønbæk, K., Hother, C., Jones, P.A. Epigenetic changes in cancer APMIS, 115 (2007),pp. 1039-1059
    [27] Hardenbol, P., Banér, J., Jain, M. et al. Multiplexed genotyping with sequence-tagged molecular inversion probes Nat. Biotechnol., 21 (2003),pp. 673-678
    [28] Hatada, I., Fukasawa, M., Kimura, M. et al. Genome-wide profiling of promoter methylation in human Oncogene, 25 (2006),pp. 3059-3064
    [29] Hatada, I., Hayashizaki, Y., Hirotsune, S. et al. A genomic scanning method for higher organisms using restriction sites as landmarks Proc. Natl. Acad. Sci. USA, 88 (1991),pp. 9523-9527
    [30] Hotchkiss, R.D. The mode of action of chemotherapeutic agents Ann. Rev. Microbiol., 2 (1948),pp. 183-214
    [31] Ibrahim, A.E., Thorne, N.P., Baird, K. et al. MMASS: An optimized array-based method for assessing CpG island methylation Nucleic Acids Res., 34 (2006),p. e136
    [32] International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome Nature, 409 (2001),pp. 860-921
    [33] Iyer, V.R., Horak, C.E., Scafe, C.S. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF Nature, 409 (2001),pp. 533-538
    [34] Jacinto, FV., Ballestar, E., Esteller, M. Methyl-DNA immunoprecipitation (MeDIP): Hunting down the DNA methylome Biotechniques, 44 (2008),p. 35
    [35] Jacinto, FV, Esteller, et al. Mutator pathways unleashed by epigenetic silencing in human cancer Mutagenesis, 22 (2007),pp. 247-253
    [36] Karolchik, D., Baertsch, R., Diekhans, M. et al. The UCSC Genome Browser Database Nucleic Acids Res., 31 (2003),pp. 51-54
    [37] Karolchik, D., Hinrichs, A.S., Furey, T.S. et al. The UCSC Table Browser data retrieval tool Nucleic Acids Res., 32 (2004),pp. D493-D496
    [38] Kim, S.J., Kang, H.S., Chang, H.L. et al. Promoter hypomethylation of the N- acetyltransferase 1 gene in breast cancer Oncol. Rep., 19 (2008),pp. 663-668
    [39] Korba, B.E., Wilson, V.L., Yoakum, G.H. Induction of hepatitis B virus core gene in human cells by cytosine demethylation in the promoter Science, 228 (1985),pp. 1103-1106
    [40] Kudriashova, I.B., Vaniushin, B.F. Rat liver methylation of nuclear DNA following hydrocortisone induction Biokhimiia, 41 (1976),pp. 215-222
    [41] Mailman, M.D., Feolo, M., Jin, Y. et al. The NCBI dbGaP database of genotypes and phenotypes Nat. Genet., 39 (2007),pp. 1181-1186
    [42] Majumder, S., Kutay, H., Datta, J. et al. Epigenetic regulation of metallothionein-i gene expression: Differential regulation of methylated and unmethylated promoters by DNA methyltransferases and methyl CpG binding proteins J. Cell. Biochem., 97 (2006),pp. 1300-1316
    [43] Male, C.J., Christensen, J.R. Synthesis of messenger ribonucleic acid after bacteriophage T1 infection J. Virol., 6 (1970),pp. 727-737
    [44] McCarroll, S.A., Altshuler, D.M. Copy-number variation and association studies of human disease Nat. Genet., 39 (2007),pp. S37-S42
    [45] Murrell, A., Heeson, S., Cooper, W.N. et al. Hum. Mol. Genet., 13 (2004),pp. 247-255
    [46] Murrell, A., Rakyan, V.K., Beck, S. From genome to epigenome Hum. Mol. Genet., 14 (2005),pp. R3-R10
    [47] Neddermann, P., Jiricny, J. Efficient removal of uracil from G.U mispairs by the mismatch-specific thymine DNA glycosylase from HeLa cells Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 1642-1646
    [48] Rauch, T., Li, H., Wu, X. et al. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells Cancer Res., 66 (2006),pp. 7939-7947
    [49] Rauch, T., Pfeifer, G.P. Methylated-CpG island recovery assay: A new technique for the rapid detection of methylated-CpG islands in cancer Lab. Invest., 85 (2005),pp. 1172-1180
    [50] Rauch, T., Wang, Z., Zhang, X. et al. Homeobox gene methylation in lung cancer studied by genome-wide analysis with a microarray-based methylated CpG island recovery assay Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 5527-5532
    [51] Rauch, T.A., Zhong, X., Wu, X. et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 252-257
    [52] Raval, A., Tanner, S.M., Byrd, J.C. et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia Cell, 129 (2007),pp. 879-890
    [53] Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development Nature, 447 (2007),pp. 425-432
    [54] Ren, B., Robert, F., Wyrick, J.J. et al. Genome-wide location and function of DNA binding proteins Science, 290 (2000),pp. 2306-2309
    [55] Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Leuk. Res., 31 (2007),pp. 1521-1528
    [56] Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia Leuk. Res., 32 (2008),pp. 487-490
    [57] Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X. et al. Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia Oncogene, 24 (2005),pp. 7213-7223
    [58] Sakai, T., Toguchida, J., Ohtani, N. et al. Allele-specific hypermethylation of the retinoblastoma tumor-suppressor gene Am. J. Hum. Gen., 48 (1991),pp. 880-888
    [59] Saxena, R., Voight, B.F., Lyssenko, V. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels Science, 316 (2007),pp. 1331-1336
    [60] Saxonov, S., Berg, P., Brutlag, D.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 1412-1417
    [61] Schena, M., Shalon, D., Davis, R.W. et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray Science, 270 (1995),pp. 467-470
    [62] Schenk, T., Stengel, S., Goellner, S. et al. Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancie Genes Chromosomes Cancer, 46 (2007),pp. 796-804
    [63] Scott, L.J., Mohlke, K.L., Bonnycastle, L.L. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants Science, 316 (2007),pp. 1341-1345
    [64] Shen, L., Toyota, M., Kondo, Y. et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 18654-18659
    [65] Sibghat, U., DNA-substrate sequence specificity of human G:T mismatch repair activity Nucleic Acids Res., 21 (1993),pp. 1281-1287
    [66] Sladek, R., Rocheleau, G., Rung, J. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes Nature, 445 (2007),pp. 881-885
    [67] Smiraglia, D.J., Rush, L.J., Frühwald, M.C. et al. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignacies Hum. Mol. Genet., 10 (2001),pp. 1413-1419
    [68] Steinthorsdottir, V., Thorleifsson, G., Reynisdottir, I. et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes Nat. Genet., 39 (2006),pp. 770-775
    [69] Strichman-Almashanu, L.Z., Lee, R.S., Onyango, P.O. et al. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes Genome Res., 12 (2002),pp. 543-554
    [70] Taylor, K.H., Kramer, R.S., Davis, J.W. et al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing Cancer Res., 67 (2007),pp. 8511-8518
    [71] The International HapMap Consortium The International HapMap Project Nature, 426 (2003),pp. 789-796
    [72] The International HapMap Consortium A haplotype map of the human genome Nature, 437 (2005),pp. 1299-1320
    [73] The International HapMap Consortium A second generation human haplotype map of over 3.1 million SNPs Nature, 449 (2007),pp. 851-861
    [74] Tompa, R., McCallum, C.M., Delrow, J. et al. Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3 Curr. Biol., 12 (2002),pp. 65-68
    [75] Tran, R.K., Henikoff, J.G., Zilberman, D. et al. Curr. Biol., 15 (2005),pp. 154-159
    [76] Turner, B.M. Defining an epigenetic code Nat. Cell Biol., 9 (2007),pp. 2-6
    [77] Venter, J.C., Adams, M.D., Myers, E.W. et al. The sequence of the human genome Science, 291 (2001),pp. 1304-1351
    [78] Waddington, C.H. The epigenotype Endeavour, 1 (1942),pp. 18-20
    [79] Watanabe, M., Ogawa, Y., Itoh, K. et al. Hypomethylation of CD30 CpG islands with aberrant JunB expression drives CD30 induction in Hodgkin lymphoma and anaplastic large cell lymphoma Lab. Invest., 88 (2008),pp. 48-57
    [80] Weber, M., Davies, J.J., Wittig, D. et al. Chromosome-wide and promoter- specific analyses identify sites of differential DNA methylation in normal and transformed human cells Nat. Genet., 37 (2005),pp. 853-862
    [81] Weber, M., Hellmann, I., Stadler, M.B. et al. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome Nat. Genet., 39 (2007),pp. 457-466
    [82] Wellcome Trust Case Control Consortium (WTCCC) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls Nature, 447 (2007),pp. 661-678
    [83] Wu, L.P., Wang, X., Li, L. et al. Histone deacetylase inhibitor depsipeptide activates silenced genes through decreasing both CpG and H3K9 methylation on the promoter Mol. Cell. Biol., 28 (2008),pp. 3219-3235
    [84] Yoo, C.B., Jones, P.A. Epigenetic therapy of cancer: Past, present and future Nat. Rev. Drug Discov., 5 (2006),pp. 37-50
    [85] Zeggini, E., Weedon, M.N., Lindgren, C.M. et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes Science, 316 (2007),pp. 1336-1341
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  28
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-04-04
  • 录用日期:  2008-06-09
  • 修回日期:  2008-06-08
  • 网络出版日期:  2008-07-18
  • 刊出日期:  2008-07-20

目录

    /

    返回文章
    返回