留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

On the origin and evolution of new genes—a genomic and experimental perspective

Qi Zhou Wen Wang

Qi Zhou, Wen Wang. On the origin and evolution of new genes—a genomic and experimental perspective[J]. Journal of Genetics and Genomics, 2008, 35(11): 639-648. doi: 10.1016/S1673-8527(08)60085-5
Citation: Qi Zhou, Wen Wang. On the origin and evolution of new genes—a genomic and experimental perspective[J]. Journal of Genetics and Genomics, 2008, 35(11): 639-648. doi: 10.1016/S1673-8527(08)60085-5

doi: 10.1016/S1673-8527(08)60085-5

On the origin and evolution of new genes—a genomic and experimental perspective

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Altschmied, J., Delfgaauw, J., Wilde, B. et al. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish Genetics, 161 (2002),pp. 259-267
    [2] Arguello, J.R., Chen, Y., Yang, S. et al. PLoS Genet., 2 (2006),p. e77
    [3] Aury, J.M., Jaillon, O., Duret, L. et al. Nature, 444 (2006),pp. 171-178
    [4] Bai, Y., Casola, C., Feschotte, C. et al. Genome Biol., 8 (2007),p. R11
    [5] Bailey, J.A., Liu, G., Eichler, E.E. An Alu transposition model for the origin and expansion of human segmental duplications Am. J. Hum. Genet., 73 (2003),pp. 823-834
    [6] Begun, D.J., Lindfors, H.A., Kern, A.D. et al. Genetics, 176 (2007),pp. 1131-1137
    [7] Betran, E., Long, M. Genetics, 164 (2003),pp. 977-988
    [8] Bishop, A.J.R., Schiestl, R.H. Homologous recombination as a mechanism for genome rearrangements: Environmental and genetic effects Hum. Mol. Genet., 9 (2000),pp. 2334-2427
    [9] Brosius, J. Retroposons–seeds of evolution Science, 251 (1991),p. 753
    [10] Cai, J., Zhao, R., Jiang, H. et al. Genetics, 179 (2008),pp. 487-496
    [11] Charlesworth, D., Liu, F.L., Zhang, L. Mol. Biol. Evol., 15 (1998),pp. 552-559
    [12] Chen, S.T., Cheng, H.C., Barbash, D.A. et al. PLoS Genet., 3 (2007),p. e107
    [13] Clark, A.G. Invasion and maintenance of a gene duplication Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 2950-2954
    [14] Clark, A.G., Eisen, M.B., Smith, D.R. et al. Nature, 450 (2007),pp. 203-218
    [15] Courseaux, A., Nahon, J.L. Birth of two chimeric genes in the Hominidae lineage Science, 291 (2001),pp. 1293-1297
    [16] Dai, H., Chen, Y., Chen, S. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 7478-7483
    [17] de Koning, A.P., Brinkman, F.S., Jones, S.J. et al. Mol. Biol. Evol., 17 (2000),pp. 1769-1773
    [18] Dean, E.J., Davis, J.C., Davis, R.W. et al. Pervasive and persistent redundancy among duplicated genes in yeast PLoS Genet., 4 (2008),p. e1000113
    [19] Drouin, G., Dover, G.A. Independent gene evolution in the potato actin gene family demonstrated by phylogenetic procedures for resolving gene conversions and the phylogeny of angiosperm actin genes J. Mol. Evol., 31 (1990),pp. 132-150
    [20] Enard, W., Przeworski, M., Fisher, S.E. et al. Nature, 418 (2002),pp. 869-872
    [21] Force, A., Lynch, M., Pickett, F.B. et al. Preservation of duplicate genes by complementary, degenerative mutations Genetics, 151 (1999),pp. 1531-1545
    [22] Fortna, A., Kim, Y., MacLaren, E. et al. Lineage-specific gene duplication and loss in human and great ape evolution PLoS Biol., 2 (2004),p. e207
    [23] Gao, L., Innan, H. Very low gene duplication rate in the yeast genome Science, 306 (2004),pp. 1367-1370
    [24] Gilbert, W. Why genes in pieces? Nature, 271 (1978),p. 501
    [25] Gu, Z., Cavalcanti, A., Chen, F.-C. et al. Mol. Biol. Evol., 19 (2002),pp. 256-262
    [26] Gu, Z., Steinmetz, L.M., Gu, X. et al. Role of duplicate genes in genetic robustness against null mutations Nature, 421 (2003),pp. 63-66
    [27] Hahn, M.W., Han, M.V., Han, S.-G. PLoS Genet., 3 (2007),p. e197
    [28] Haldane, J.B.S.
    [29] Hillenmeyer, M.E., Fung, E., Wildenhain, J. et al. The chemical genomic portrait of yeast: Uncovering a phenotype for all genes Science, 320 (2008),pp. 362-365
    [30] Hittinger, C.T., Carroll, S.B. Gene duplication and the adaptive evolution of a classic genetic switch Nature, 449 (2007),pp. 677-681
    [31] Hotopp, J.C.D., Clark, M.E., Oliveira, D.C.S.G. et al. Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes Science, 317 (2007),pp. 1753-1756
    [32] Jacob, F. Evolution and tinkering Science, 196 (1977),pp. 1161-1166
    [33] Katju, V., Lynch, M. Mol. Biol. Evol., 23 (2006),pp. 1056-1067
    [34] Keeling, P.J., Palmer, J.D. Horizontal gene transfer in eukaryotic evolution Nat. Rev. Genet., 9 (2008),pp. 605-618
    [35] Kidd, J.M., Cooper, G.M., Donahue, W.F. et al. Mapping and sequencing of structural variation from eight human genomes Nature, 453 (2008),pp. 56-64
    [36] Koonin, E.V., Makarova, K.S., Aravind, L. Horizontal gene transfer in prokaryotes: Quantification and classification Annu. Rev. Microbiol., 55 (2001),pp. 709-742
    [37] Levine, M.T., Jones, C.D., Kern, A.D. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 9935-9939
    [38] Li, W.H. (1997). Molecular Evolution. (Sunderland).
    [39] Long, M. Journal club Nature, 449 (2007),p. 511
    [40] Long, M., Langley, C.H. Science, 260 (1993),pp. 91-95
    [41] Long, M., Betran, E., Thornton, K. et al. The origin of new genes: Glimpses from the young and old Nat. Rev. Genet., 4 (2003),pp. 865-875
    [42] Lu, J., Shen, Y., Wu, Q. et al. Nat. Genet., 40 (2008),pp. 351-355
    [43] Lynch, M., Conery, J.S. The evolutionary fate and consequences of duplicate genes Science, 290 (2000),pp. 1151-1155
    [44] Lynch, M., Force, A. The probability of duplicate gene preservation by subfunctionalization Genetics, 154 (2000),pp. 459-473
    [45] Marioni, J., Mason, C., Mane, S. et al. RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays Genome Res., 18 (2008),pp. 1509-1517
    [46] Marques, A.C., Dupanloup, I., Vinckenbosch, N. et al. Emergence of young human genes after a burst of retroposition in primates PLoS Biol., 3 (2005),p. e357
    [47] Martignetti, J.A., Brosius, J. Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 11563-11567
    [48] Muller, H.J. The origination of chromatin deficiencies as minute deletions subject to insertion elsewhere Genetica, 17 (1935),pp. 237-252
    [49] Nowak, M.A., Boerlijst, M.C., Cooke, J. et al. Evolution of genetic redundancy Nature, 388 (1997),pp. 167-171
    [50] Nurminsky, D.I., Nurminskaya, M.V., De Aguiar, D. et al. Nature, 396 (1998),pp. 572-575
    [51] Ohno, S.
    [52] Ohno, S. Ancient linkage groups and frozen accidents Nature, 244 (1973),pp. 259-262
    [53] Pan, D., Zhang, L. Quantifying the major mechanisms of recent gene duplications in the human and mouse genomes: A novel strategy to estimate gene duplication rates Genome Biol., 8 (2007),p. R158
    [54] Patthy, L. Exon shuffling and other ways of module exchange Matrix Biol., 15 (1996),pp. 301-310
    [55] Patthy, L. Genome evolution and the evolution of exon-shuffling—a review Gene, 238 (1999),pp. 103-114
    [56] Pollard, K.S., Salama, S.R., Lambert, N. et al. An RNA gene expressed during cortical development evolved rapidly in humans Nature, 443 (2006),pp. 167-172
    [57] Rosso, L., Marques, A.C., Reichert, A.S. et al. Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection PLoS Genet., 4 (2008),p. e1000150
    [58] Rosso, L., Marques, A.C., Weier, M. et al. PLoS Biol., 6 (2008),p. e140
    [59] Roth, D., Wilson, J.
    [60] Roth, D.B., Porter, T.N., Wilson, J.H. Mechanisms of nonhomologous recombination in mammalian cells Mol. Cell. Biol., 5 (1985),pp. 2599-2607
    [61] Semon, M., Wolfe, K.H. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 8333-8338
    [62] Sikela, J.M. The jewels of our genome: The search for the genomic changes underlying the evolutionarily unique capacities of the human brain PLoS Genet., 2 (2006),p. e80
    [63] Tamura, K., Subramanian, S., Kumar, S. Mol. Biol. Evol., 21 (2004),pp. 36-44
    [64] Tumpel, S., Cambronero, F., Wiedemann, L.M. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 5419-5424
    [65] Walsh, B. Population-genetic models of the fates of duplicate genes Genetica, 118 (2003),pp. 279-294
    [66] Walsh, J.B. How often do duplicated genes evolve new functions? Genetics, 139 (1995),pp. 421-428
    [67] Wang, W., Brunet, F.G., Nevo, E. et al. Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 4448-4453
    [68] Wang, W., Yu, H., Long, M. Nat. Genet., 36 (2004),pp. 523-527
    [69] Wang, W., Zhang, J., Alvarez, C. et al. Mol. Biol. Evol., 17 (2000),pp. 1294-1301
    [70] Wang, W., Zheng, H., Fan, C. et al. High rate of chimeric gene origination by retroposition in plant genomes Plant Cell, 18 (2006),pp. 1791-1802
    [71] Wolfe, K.H., Shields, D.C. Molecular evidence for an ancient duplication of the entire yeast genome Nature, 387 (1997),pp. 708-713
    [72] Yang, S., Arguello, J.R., Li, X. et al. PLoS Genet., 4 (2008),p. e3
    [73] Yu, H., Jiang, H., Zhou, Q. et al. Hum. Mol. Genet., 15 (2006),pp. 1870-1875
    [74] Zhang, J., Zhang, Y., Rosenberg, H.F. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey Nat. Genet., 30 (2002),pp. 411-415
    [75] Zhang, R., Peng, Y., Wang, W. et al. Rapid evolution of an X-linked microRNA cluster in primates Genome Res., 17 (2007),pp. 612-617
    [76] Zhang, Y., Sturgill, D., Parisi, M. et al. Nature, 450 (2007),pp. 233-237
    [77] Zhang, Y., Wu, Y., Liu, Y. et al. Plant Physiol., 138 (2005),pp. 935-948
    [78] Zhou, Q., Zhang, G., Zhang, Y. et al. Genome Res., 18 (2008),pp. 1446-1455
  • 加载中
计量
  • 文章访问数:  136
  • HTML全文浏览量:  41
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-08-30
  • 录用日期:  2008-09-19
  • 修回日期:  2008-09-18
  • 网络出版日期:  2008-11-18
  • 刊出日期:  2008-11-20

目录

    /

    返回文章
    返回