留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)

Zefeng Yang Qingsong Gao Changsen Sun Wenjuan Li Shiliang Gu Chenwu Xu

Zefeng Yang, Qingsong Gao, Changsen Sun, Wenjuan Li, Shiliang Gu, Chenwu Xu. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2009, 36(3): 161-172. doi: 10.1016/S1673-8527(08)60103-4
Citation: Zefeng Yang, Qingsong Gao, Changsen Sun, Wenjuan Li, Shiliang Gu, Chenwu Xu. Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2009, 36(3): 161-172. doi: 10.1016/S1673-8527(08)60103-4

doi: 10.1016/S1673-8527(08)60103-4

Molecular evolution and functional divergence of HAK potassium transporter gene family in rice (Oryza sativa L.)

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ahn, S.J., Shin, R., Schachtman, D.P. Plant Physiol., 134 (2004),pp. 1135-1145
    [2] Amrutha, R.N., Sekhar, P.N., Varshney, R.K. et al. Plant Sci., 172 (2007),pp. 708-721
    [3] Ashley, M.K., Grant, M., Grabov, A. Plant responses to potassium deficiencies: A role for potassium transport proteins J. Exp. Bot., 57 (2006),pp. 425-436
    [4] Bai, J., Pennill, L.A., Ning, J. et al. Diversity in nucleotide binding site-leucine-rich repeat genes in cereals Genome Res., 12 (2002),pp. 1871-1884
    [5] Banuelos, M.A., Garciadeblas, B., Cubero, B. et al. Inventory and functional characterization of the HAK potassium transporters of rice Plant Physiol., 130 (2002),pp. 784-795
    [6] Chenna, R., Sugawara, H., Koike, T. et al. Multiple sequence alignment with the Clustal series of programs Nucleic Acids Res., 31 (2003),pp. 3497-3500
    [7] Epstein, E., Rains, D.W., Elzam, O.E. Resolution of dual mechanisms of potassium absorption by barley roots Proc. Natl. Acad. Sci. USA, 49 (1963),pp. 684-692
    [8] Gierth, M., Maser, P., Schroeder, J.I. Plant Physiol., 137 (2005),pp. 1105-1114
    [9] Goff, S.A., Ricke, D., Lan, T.H. et al. Science, 296 (2002),pp. 92-100
    [10] Grabov, A. Plant KT/KUP/HAK potassium transporters: Single family-multiple functions Ann. Bot. (Lond), 99 (2007),pp. 1035-1041
    [11] Gu, X. Functional divergence in protein (family) sequence evolution Genetica, 118 (2003),pp. 133-141
    [12] Gu, X. A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences Mol. Biol. Evol., 23 (2006),pp. 1937-1945
    [13] Gu, X., Vander Velden, K. DIVERGE: Phylogeny-based analysis for functional-structural divergence of a protein family Bioinformatics, 18 (2002),pp. 500-501
    [14] Guyot, R., Keller, B. Ancestral genome duplication in rice Genome, 47 (2004),pp. 610-614
    [15] International Rice Genome Sequencing Project The map-based sequence of the rice genome Nature, 436 (2005),pp. 793-800
    [16] Jain, M., Tyagi, A.K., Khurana, J.P. Genomics, 88 (2006),pp. 360-371
    [17] Jordan, I.K., Makarova, K.S., Spouge, J.L. et al. Lineage-specific gene expansions in bacterial and archaeal genomes Genome Res., 11 (2001),pp. 555-565
    [18] Kong, H., Landherr, L.L., Frohlich, M.W. et al. Plant J., 50 (2007),pp. 873-885
    [19] Lespinet, O., Wolf, Y.I., Koonin, E.V. et al. The role of lineage-specific gene family expansion in the evolution of eukaryotes Genome Res., 12 (2002),pp. 1048-1059
    [20] Liu, Q., Zhu, H. Gene, 409 (2008),pp. 1-10
    [21] Liu, Q., Dou, S., Wang, G. et al. Evolution and functional divergence of monocarboxylate transporter genes in vertebrates Gene, 423 (2008),pp. 14-22
    [22] Maathuis, F.J. The role of monovalent cation transporters in plant responses to salinity J. Exp. Bot., 57 (2006),pp. 1137-1147
    [23] Maher, C., Stein, L., Ware, D. Genome Res., 16 (2006),pp. 510-519
    [24] Martinez-Castilla, L.P., Alvarez-Buylla, E.R. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 13407-13412
    [25] Maser, P., Thomine, S., Schroeder, J.I. et al. Plant Physiol., 126 (2001),pp. 1646-1667
    [26] Mondragon-Palomino, M., Gaut, B.S. Mol. Biol. Evol., 22 (2005),pp. 2444-2456
    [27] Mondragon-Palomino, M., Meyers, B.C., Michelmore, R.W. et al. Genome Res., 12 (2002),pp. 1305-1315
    [28] Mulder, N., Apweiler, R. InterPro and InterProScan: tools for protein sequence classification and comparison Methods Mol. Biol., 396 (2007),pp. 59-70
    [29] Nielsen, R., Yang, Z. Genetics, 148 (1998),pp. 929-936
    [30] Qi, Z., Hampton, C.R., Shin, R. et al. J. Exp. Bot., 59 (2008),pp. 595-607
    [31] Rodriguez-Navarro, A. Potassium transport in fungi and plants Biochim. Biophys. Acta, 1469 (2000),pp. 1-30
    [32] Santa-Maria, G.E., Rubio, F., Dubcovsky, J. et al. Plant Cell, 9 (1997),pp. 2281-2289
    [33] Sawyer, S. Statistical tests for detecting gene conversion Mol. Biol. Evol., 6 (1989),pp. 526-538
    [34] Sonnhammer, E.L., Eddy, S.R., Durbin, R. Pfam: A comprehensive database of protein domain families based on seed alignments Proteins, 28 (1997),pp. 405-420
    [35] Su, H., Golldack, D., Zhao, C. et al. The expression of HAK-type K(+) transporters is regulated in response to salinity stress in common ice plant Plant Physiol., 129 (2002),pp. 1482-1493
    [36] Tamura, K., Dudley, J., Nei, M. et al. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol., 24 (2007),pp. 1596-1599
    [37] Very, A.A., Sentenac, H. Molecular mechanisms and regulation of K+ transport in higher plants Annu. Rev. Plant Biol., 54 (2003),pp. 575-603
    [38] Wang, Y.H., Garvin, D.F., Kochian, L.V. Rapid induction of regulatory and transporter genes in response to phosphorus, potassium, and iron deficiencies in tomato roots. Evidence for cross talk and root/rhizosphere-mediated signals Plant Physiol., 130 (2002),pp. 1361-1370
    [39] Ware, D.H., Jaiswal, P., Ni, J. et al. Gramene, a tool for grass genomics Plant Physiol., 130 (2002),pp. 1606-1613
    [40] Yang, Z. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution Mol. Biol. Evol., 15 (1998),pp. 568-573
    [41] Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood Mol. Biol. Evol., 24 (2007),pp. 1586-1591
    [42] Yang, Z., Bielawski, J.P. Statistical methods for detecting molecular adaptation Trends Ecol. Evol., 15 (2000),pp. 496-503
    [43] Yang, Z., Wong, W.S., Nielsen, R. Bayes empirical bayes inference of amino acid sites under positive selection Mol. Biol. Evol., 22 (2005),pp. 1107-1118
    [44] Yang, Z., Wang, X., Gu, S. et al. Gene, 407 (2008),pp. 1-11
    [45] Yang, Z., Gu, S., Wang, X. et al. J. Mol. Evol., 67 (2008),pp. 266-277
    [46] Yang, Z., Zhou, Y., Wang, X. et al. Genomics, 92 (2008),pp. 246-253
    [47] Yu, J., Hu, S., Wang, J. et al. Science, 296 (2002),pp. 79-92
    [48] Yu, J., Wang, J., Lin, W. et al. PLoS Biol., 3 (2005),p. e38
    [49] Zhang, J., Nielsen, R., Yang, Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level Mol. Biol. Evol., 22 (2005),pp. 2472-2479
    [50] Zhang, S., Chen, C., Li, L. et al. Evolutionary expansion, gene structure, and expresion of the rice wall-associated kinase gene family Plant Physiol., 139 (2005),pp. 1107-1124
  • 加载中
计量
  • 文章访问数:  112
  • HTML全文浏览量:  32
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-07
  • 录用日期:  2008-12-10
  • 修回日期:  2008-12-02
  • 网络出版日期:  2009-03-18
  • 刊出日期:  2009-03-20

目录

    /

    返回文章
    返回