留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

One-carbon metabolism and breast cancer: an epidemiological perspective

Xinran Xu Jia Chen

Xinran Xu, Jia Chen. One-carbon metabolism and breast cancer: an epidemiological perspective[J]. Journal of Genetics and Genomics, 2009, 36(4): 203-214. doi: 10.1016/S1673-8527(08)60108-3
Citation: Xinran Xu, Jia Chen. One-carbon metabolism and breast cancer: an epidemiological perspective[J]. Journal of Genetics and Genomics, 2009, 36(4): 203-214. doi: 10.1016/S1673-8527(08)60108-3

doi: 10.1016/S1673-8527(08)60108-3

One-carbon metabolism and breast cancer: an epidemiological perspective

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Bailey, L.B., Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: Metabolic significance, risks and impact on folate requirement J. Nutr., 129 (1999),pp. 919-922
    [2] Baylin, S.B., Herman, J.G., Graff, J.R. et al. Alterations in DNA methylation: A fundamental aspect of neoplasia Adv. Cancer Res., 72 (1998),pp. 141-196
    [3] Baylin, S.B., Esteller, M., Rountree, M.R. et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer Hum. Mol. Genet., 10 (2001),pp. 687-692
    [4] Blount, B.C., Mack, M.M., Wehr, C.M. et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: Implications for cancer and neuronal damage Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 3290-3295
    [5] Castro, R., Rivera, I., Ravasco, P. et al. J. Med. Genet., 41 (2004),pp. 454-458
    [6] Chabner, B.
    [7] Chen, J., Stampfer, M.J., Ma, J. et al. Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction Atherosclerosis, 154 (2001),pp. 667-672
    [8] Chen, J., Gammon, M.D., Chan, W. et al. Cancer Res., 65 (2005),pp. 1606-1614
    [9] Cho, E., Holmes, M., Hankinson, S.E. et al. Nutrients involved in one-carbon metabolism and risk of breast cancer among premenopausal women Cancer Epidemiol. Biomarkers Prev., 16 (2007),pp. 2787-2790
    [10] Christman, J.K., Sheikhnejad, G., Dizik, M. et al. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency Carcinogenesis, 14 (1993),pp. 551-557
    [11] Clarke, R.
    [12] Combs, G.F.
    [13] Davis, C.D., Uthus, E.O. DNA methylation, cancer susceptibility, and nutrient interactions Exp. Biol. Med., 229 (2004),pp. 988-995
    [14] Demark-Wahnefried, W., Peterson, B., McBride, C. et al. Current health behaviors and readiness to pursue life-style changes among men and women diagnosed with early stage prostate and breast carcinomas Cancer, 88 (2000),pp. 674-684
    [15] Ericson, U., Sonestedt, E., Gullberg, B. et al. High folate intake is associated with lower breast cancer incidence in postmenopausal women in the Malmo Diet and Cancer cohort Am. J. Clin. Nutr., 86 (2007),pp. 434-443
    [16] Esteller, M. Epigenetics in Cancer N. Engl. J. Med., 358 (2008),pp. 1148-1159
    [17] Fowler, B.M., Giuliano, A.R., Piyathilake, C. et al. Hypomethylation in cervical tissue: Is there a correlation with folate status? Cancer Epidemiol Biomarkers Prev., 7 (1998),pp. 901-906
    [18] Frosst, P., Blom, H.J., Milos, R. et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase Nat. Genet., 10 (1995),pp. 111-113
    [19] Gaughan, D.J., Kluijtmans, L.A., Barbaux, S. et al. Atherosclerosis, 157 (2001),pp. 451-456
    [20] Goode, E.L., Potter, J.D., Bigler, J. et al. Methionine synthase D919G polymorphism, folate metabolism, and colorectal adenoma risk Cancer Epidemiol. Biomarkers Prev., 13 (2004),pp. 157-162
    [21] Halsted, C.H., Villanueva, J.A., Devlin, A.M. et al. Metabolic interactions of alcohol and folate J. Nutr., 132 (2002),pp. 2367S-2372S
    [22] Hanahan, D., Weinberg, R.A. The hallmarks of cancer Cell, 100 (2000),pp. 57-70
    [23] Hannon-Fletcher, M.P., Armstrong, N.C., Scott, J.M. et al. Determining bioavailability of food folates in a controlled intervention study Am. J. Clin. Nutr., 80 (2004),pp. 911-918
    [24] Harmon, D.L., Shields, D.C., Woodside, J.V. et al. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations Genet. Epidemiol., 17 (1999),pp. 298-309
    [25] Herman, J.G. Hypermethylation of tumor suppressor genes in cancer Semin. Cancer Biol., 9 (1999),pp. 359-367
    [26] Horie, N., Aiba, H., Oguro, K. et al. Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase Cell Struct. Funct., 20 (1995),pp. 191-197
    [27] Institute of Medicine
    [28] Jacob, R.A., Gretz, D.M., Taylor, P.C. et al. Moderate folate depletion increases plasma homocysteine and decreases lymphocyte DNA methylation in postmenopausal women J. Nutr., 128 (1998),pp. 1204-1212
    [29] Jacques, P.F., Bostom, A.G., Selhub, J. et al. Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study Atherosclerosis, 166 (2003),pp. 49-55
    [30] Johnson, W.G., Stenroos, E.S., Spychala, J.R. et al. Am. J. Med. Genet. A, 124 (2004),pp. 339-345
    [31] Justenhoven, C., Hamann, U., Pierl, C.B. et al. Cancer Epidemiol. Biomarkers Prev., 14 (2005),pp. 3015-3018
    [32] Kaneda, S., Takeishi, K., Ayusawa, D. et al. Role in translation of a triple tandemly repeated sequence in the 5′-untranslated region of human thymidylate synthase mRNA Nuclear Acids Res., 15 (1987),pp. 1259-1270
    [33] Kawakami, K., Ruszkiewicz, A., Bennett, G. et al. The folate pool in colorectal cancers is associated with DNA hypermethylation and with a polymorphism in methylenetetrahydrofolate reductase Clin. Cancer Res., 9 (2003),pp. 5860-5865
    [34] Lajous, M., Romieu, I., Sabia, S. et al. Folate, vitamin B12 and postmenopausal breast cancer in a prospective study of French women Cancer Causes Control, 17 (2006),pp. 1209-1213
    [35] Larsson, S.C., Giovannucci, E., Wolk, A. Folate and risk of breast cancer: A meta-analysis J. Natl. Cancer Inst., 99 (2007),pp. 64-76
    [36] Lewis, S.J., Harbord, R.M., Harris, R. et al. Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk J. Natl. Cancer Inst., 98 (2006),pp. 1607-1622
    [37] Lissowska, J., Gaudet, M.M., Brinton, L.A. et al. Genetic polymorphisms in the one-carbon metabolism pathway and breast cancer risk: A population-based case-control study and meta-analyses Int. J. Cancer, 120 (2007),pp. 2696-2703
    [38] Luebeck, E.G., Moolgavkar, S.H., Liu, A.Y. et al. Does folic acid supplementation prevent or promote colorectal cancer? Results from model-based predictions Cancer Epidemiol. Biomarkers Prev., 17 (2008),pp. 1360-1367
    [39] Machlin, L.J.
    [40] Macis, D., Maisonneuve, P., Johansson, H. et al. Methylenetetrahydrofolate reductase (MTHFR) and breast cancer risk: A nested-case-control study and a pooled meta-analysis Breast Cancer Res. Treat., 106 (2007),pp. 263-271
    [41] Mandola, M.V., Stoehlmacher, J., Zhang, W. et al. Pharmacogenetics, 14 (2004),pp. 319-327
    [42] Maring, J.G., Groen, H.J., Wachters, F.M. et al. Genetic factors influencing pyrimidine-antagonist chemotherapy Pharmacogenomics J., 5 (2005),pp. 226-243
    [43] Martin, D.N., Boersma, B.J., Howe, T.M. et al. BMC Cancer, 6 (2006),p. 257
    [44] Maunsell, E., Drolet, M., Brisson, J. et al. Dietary change after breast cancer: Extent, predictors, and relation with psychological distress J. Clin. Oncol., 20 (2002),pp. 1017-1025
    [45] McBride, C.M., Clipp, E., Peterson, B.L. et al. Psychological impact of diagnosis and risk reduction among cancer survivors Psychooncology, 9 (2000),pp. 418-427
    [46] McEligot, A.J., Largent, J., Ziogas, A. et al. Dietary fat, fiber, vegetable, and micronutrients are associated with overall survival in postmenopausal women diagnosed with breast cancer Nutr. Cancer, 55 (2006),pp. 132-140
    [47] Miller, J.W., Nadeau, M.R., Smith, J. et al. Folate-deficiency-induced homocysteinaemia in rats: Disruption of S-adenosylmethionine's co-ordinate regulation of homocysteine metabolism Biochem. J., 298 (1994),pp. 415-419
    [48] Niculescu, M.D. Diet, methyl donors and DNA methylation: Interactions between dietary folate, methionine and choline J. Nutr., 132 (2002),pp. 2333S-2335S
    [49] Nijhout, H.F., Reed, M.C., Anderson, D.F. et al. Long-range allosteric interactions between the folate and methionine cycles stabilize DNA methylation reaction rate Epigenetics, 1 (2006),pp. 81-87
    [50] Nijhout, H.F., Reed, M., Lam, S. et al. In silico experimentation with a model of hepatic mitochondrial folate metabolism Theor. Biol. Med. Model., 3 (2006),p. 40
    [51] Nijhout, H.F., Reed, M.C., Budu, P. et al. A mathematical model of the folate cycle: New insights into folate homeostasis J. Biol. Chem., 279 (2004),pp. 55008-55016
    [52] Paz, M.F., Avila, S., Fraga, M.F. et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors Cancer Res., 62 (2002),pp. 4519-4524
    [53] Pullarkat, S.T., Stoehlmacher, J., Ghaderi, V. et al. Thymidylate synthase gene polymorphism determines response and toxicity of 5-FU chemotherapy Pharmacogenomics J., 1 (2001),pp. 65-70
    [54] Rampersaud, G.C., Kauwell, G.P., Hutson, A.D. et al. Genomic DNA methylation decreases in response to moderate folate depletion in elderly women Am. J. Clin. Nutr., 72 (2000),pp. 998-1003
    [55] Reed, M.C., Nijhout, H.F., Neuhouser, M.L. et al. A mathematical model gives insights into nutritional and genetic aspects of folate-mediated one-carbon metabolism J. Nutr., 136 (2006),pp. 2653-2661
    [56] Rohan, T.E., Jain, M.G., Howe, G.R. et al. Dietary folate consumption and breast cancer risk J. Natl. Cancer Inst., 92 (2000),pp. 266-269
    [57] Rossi, E., Hung, J., Beilby, J.P. et al. Folate levels and cancer morbidity and mortality: Prospective cohort study from Busselton, Western Australia Ann. Epidemiol., 16 (2006),pp. 206-212
    [58] Russo, J., Yang, X., Hu, Y.F. et al. Biological and molecular basis of human breast cancer Front. Biosci., 3 (1998),pp. D944-D960
    [59] Salminen, E.K. Does breast cancer change patients' dietary habits? Eur J. Clin. Nutr., 54 (2000),pp. 844-848
    [60] Sauberlich, H.E., Kretsch, M.J., Skala, J.H. et al. Folate requirement and metabolism in nonpregnant women Am. J. Clin. Nutr., 46 (1987),pp. 1016-1028
    [61] Sellers, T.A., Kushi, L.H., Cerhan, J.R. et al. Dietary folate intake, alcohol, and risk of breast cancer in a prospective study of postmenopausal women Epidemiology, 12 (2001),pp. 420-428
    [62] Sellers, T.A., Alberts, S.R., Vierkant, R.A. et al. High-folate diets and breast cancer survival in a prospective cohort study Nutr. Cancer, 44 (2002),pp. 139-144
    [63] Shrubsole, M.J., Shu, X.O., Ruan, Z.X. et al. Breast Cancer Res. Treat., 91 (2005),pp. 73-79
    [64] Shrubsole, M.J., Gao, Y., Cai, Q. et al. Cancer Epidemiol. Biomarkers Prev., 15 (2006),pp. 586-588
    [65] Sohn, K., Croxford, R., Yates, Z. et al. Effect of the methylenetetrahydrofolate reductase C677T polymorphism on chemosensitivity of colon and breast cancer cells to 5-fluorouracil and methotrexate J. Natl. Cancer Inst., 96 (2004),pp. 134-144
    [66] Stern, L.L., Mason, J.B., Selhub, J. et al. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene Cancer Epidemiol. Biomarkers Prev., 9 (2000),pp. 849-853
    [67] Stevens, V.L., McCullough, M.L., Pavluck, A.L. et al. Association of polymorphisms in one-carbon metabolism genes and postmenopausal breast cancer incidence Cancer Epidemiol. Biomarkers Prev., 16 (2007),pp. 1140-1147
    [68] Stevenson, J.P., Redlinger, M., Kluijtmans, L.A. et al. Phase I clinical and pharmacogenetic trial of irinotecan and raltitrexed administered every 21 days to patients with cancer J. Clin. Oncol., 19 (2001),pp. 4081-4087
    [69] Stolzenberg-Solomon, R.Z., Chang, S.C., Leitzmann, M.F. et al. Folate intake, alcohol use, and postmenopausal breast cancer risk in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Am. J. Clin. Nutr., 83 (2006),pp. 895-904
    [70] Toffoli, G., Veronesi, A., Boiocchi, M. et al. Ann. Oncol., 11 (2000),pp. 373-374
    [71] Ulrich, C.M., Curtin, K., Samowitz, W. et al. J. Nutr., 135 (2005),pp. 2462-2467
    [72] Ulrich, C.M., Bigler, J., Velicer, C.M. et al. Searching expressed sequence tag databases: Discovery and confirmation of a common polymorphism in the Thymidylate Synthase gene Cancer Epidemiol. Biomarkers Prev., 9 (2000),pp. 1381-1385
    [73] Ulrich, C.M., Nijhout, H.F., Reed, M.C. Mathematical modeling: Epidemiology meets systems biology Cancer Epidemiol. Biomarkers Prev., 15 (2006),pp. 827-829
    [74] Ulrich, C.M. Folate and cancer prevention: A closer look at a complex picture Am. J. Clin. Nutr., 86 (2007),pp. 271-273
    [75] Ulvik, A., Ueland, P.M., Fredriksen, A. et al. Functional inference of the methylenetetrahydrofolate reductase 677C>T and 1298A>C polymorphisms from a large-scale epidemiological study Hum. Genet., 121 (2007),pp. 57-64
    [76] van Engeland, M., Weijenberg, M.P., Roemen, G.M. et al. Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: The Netherlands cohort study on diet and cancer Cancer Res., 63 (2003),pp. 3133-3137
    [77] Velicer, C.M., Ulrich, C.M. Vitamin and mineral supplement use among US adults after cancer diagnosis: A systematic review J. Clin. Oncol., 26 (2008),pp. 665-673
    [78] Weisberg, I.S., Jacques, P.F., Selhub, J. et al. Atherosclerosis, 156 (2001),pp. 409-415
    [79] Widschwendter, M., Jones, P.A. DNA methylation and breast carcinogenesis Oncogene, 21 (2002),pp. 5462-5482
    [80] Wilson, A., Platt, R., Wu, Q. et al. Mol. Genet. Metab., 67 (1999),pp. 317-323
    [81] Xu, X., Gammon, M.D., Wetmur, J.G. et al. Am. J. Clin. Nutr., 85 (2007),pp. 1098-1102
    [82] Xu, X., Gammon, M.D., Zhang, H. et al. Polymorphisms of one-carbon metabolizing genes and risk of breast cancer in a population-based study Carcinogenesis, 28 (2007),pp. 1504-1509
    [83] Xu, X., Gammon, M.D., Zeisel, S.H. et al. Choline metabolism and risk of breast cancer in a population-based study FASEB J., 22 (2008),pp. 2045-2052
    [84] Xu, X., Gammon, M.D., Wetmur, J.G. et al. B-vitamin intake, one-carbon metabolism, and survival in a population-based study of women with breast cancer Cancer Epidemiol. Biomarkers Prev., 17 (2008),pp. 2109-2116
    [85] Young, R.C. Mechanisms to improve chemotherapy effectiveness Cancer, 65 (1990),pp. 815-822
    [86] Zhang, S., Hunter, D.J., Hankinson, S.E. et al. A prospective study of folate intake and the risk of Breast Cancer JAMA, 281 (1999),pp. 1632-1637
    [87] Zintzaras, E. Methylenetetrahydrofolate reductase gene and susceptibility to breast cancer: A meta-analysis Clin. Genet., 69 (2006),pp. 327-336
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2008-10-22
  • 录用日期:  2009-01-08
  • 修回日期:  2008-12-12
  • 网络出版日期:  2009-04-17
  • 刊出日期:  2009-04-20

目录

    /

    返回文章
    返回