留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TGF-β signaling in aortic aneurysm: another round of controversy

Fuyu Lin Xiao Yang

Fuyu Lin, Xiao Yang. TGF-β signaling in aortic aneurysm: another round of controversy[J]. Journal of Genetics and Genomics, 2010, 37(9): 583-591. doi: 10.1016/S1673-8527(09)60078-3
Citation: Fuyu Lin, Xiao Yang. TGF-β signaling in aortic aneurysm: another round of controversy[J]. Journal of Genetics and Genomics, 2010, 37(9): 583-591. doi: 10.1016/S1673-8527(09)60078-3

doi: 10.1016/S1673-8527(09)60078-3

TGF-β signaling in aortic aneurysm: another round of controversy

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Arbustini, E., Marziliano, N., Magrassi, L. Aneurysm syndromes and TGF-β receptor mutations N. Engl. J. Med., 355 (2006),p. 2155
    [2] Brooke, B.S., Habashi, J.P., Judge, D.P. et al. Angiotensin II blockade and aortic-root dilation in Marfan's syndrome N. Engl. J. Med., 358 (2008),pp. 2787-2795
    [3] Carta, L., Smaldone, S., Zilberberg, L. et al. J. Biol. Chem., 284 (2009),pp. 5630-5636
    [4] Carvalho, R.L., Itoh, F., Goumans, M.J. et al. Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice J. Cell Sci., 120 (2007),pp. 4269-4277
    [5] Charbonneau, N.L., Ono, R.N., Corson, G.M. et al. Fine tuning of growth factor signals depends on fibrillin microfibril networks Birth Defects Res. C Embryo Today, 72 (2004),pp. 37-50
    [6] Chaudhry, S.S., Cain, S.A., Morgan, A. et al. Fibrillin-1 regulates the bioavailability of TGFβ1 J. Cell Biol., 176 (2007),pp. 355-367
    [7] Chen, Q., Chen, H., Zheng, D. et al. Smad7 is required for the development and function of the heart J. Biol. Chem., 284 (2009),pp. 292-300
    [8] Choudhary, B., Zhou, J., Li, P. et al. Absence of TGFβ signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm Genesis, 47 (2009),pp. 115-121
    [9] Daugherty, A., Cassis, L.A. Mouse models of abdominal aortic aneurysms Arterioscler. Thromb. Vasc. Biol., 24 (2004),pp. 429-434
    [10] Daugherty, A., Manning, M.W., Cassis, L.A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice J. Clin. Invest., 105 (2000),pp. 1605-1612
    [11] Deng, G.G., Martin-McNulty, B., Sukovich, D.A. et al. Urokinase-type plasminogen activator plays a critical role in angiotensin II-induced abdominal aortic aneurysm Circ. Res., 92 (2003),pp. 510-517
    [12] Derynck, R., Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling Nature, 425 (2003),pp. 577-584
    [13] Dietz, H.C. TGF-β in the pathogenesis and prevention of disease: a matter of aneurysmic proportions J. Clin. Invest., 120 (2010),pp. 403-407
    [14] Dietz, H.C., Cutting, G.R., Pyeritz, R.E. et al. Nature, 352 (1991),pp. 337-339
    [15] Doetschman, T. Influence of genetic background on genetically engineered mouse phenotypes Methods Mol. Biol., 530 (2009),pp. 423-433
    [16] El-Hamamsy, I., Yacoub, M.H. Cellular and molecular mechanisms of thoracic aortic aneurysms Nat. Rev. Cardiol., 6 (2009),pp. 771-786
    [17] Feng, X.H., Derynck, R. Specificity and versatility in TGF-β signaling through Smads Annu. Rev. Cell Dev. Biol., 21 (2005),pp. 659-693
    [18] Frutkin, A.D., Otsuka, G., Stempien-Otero, A. et al. TGF-β1 limits plaque growth, stabilizes plaque structure, and prevents aortic dilation in apolipoprotein E-null mice Arterioscler. Thromb. Vasc. Biol., 29 (2009),pp. 1251-1257
    [19] Gomez, D., Al Haj Zen, A., Borges, L.F. et al. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway J. Pathol., 218 (2009),pp. 131-142
    [20] Goumans, M.J., Liu, Z., ten Dijke, P. TGF-β signaling in vascular biology and dysfunction Cell Res., 19 (2009),pp. 116-127
    [21] Goumans, M.J., Mummery, C. Functional analysis of the TGFβ receptor/Smad pathway through gene ablation in mice Int. J. Dev. Biol., 44 (2000),pp. 253-265
    [22] Guo, D.C., Pannu, H., Tran-Fadulu, V. et al. Nat. Genet., 39 (2007),pp. 1488-1493
    [23] Habashi, J.P., Judge, D.P., Holm, T.M. et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome Science, 312 (2006),pp. 117-121
    [24] Hanada, K., Vermeij, M., Garinis, G.A. et al. Perturbations of vascular homeostasis and aortic valve abnormalities in fibulin-4 deficient mice Circ. Res., 100 (2007),pp. 738-746
    [25] Huang, J., Davis, E.C., Chapman, S.L. et al. Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression Circ. Res., 106 (2010),pp. 583-592
    [26] Hynes, R.O. The extracellular matrix: not just pretty fibrils Science, 326 (2009),pp. 1216-1219
    [27] Isogai, Z., Ono, R.N., Ushiro, S. et al. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein J. Biol. Chem., 278 (2003),pp. 2750-2757
    [28] Jones, J.A, Spinale, F.G., Ikonomidis, J.S. Transforming growth factor-β signaling in thoracic aortic aneurysm development: a paradox in pathogenesis J. Vasc. Res., 46 (2009),pp. 119-137
    [29] Lan, Y., Liu, B., Yao, H. et al. Essential role of endothelial Smad4 in vascular remodeling and integrity Mol. Cell Biol., 27 (2007),pp. 7683-7692
    [30] Loeys, B., De Paepe, A. New insights in the pathogenesis of aortic aneurysms Verh. K. Acad. Geneeskd. Belg., 70 (2008),pp. 69-84
    [31] Loeys, B.L., Chen, J., Neptune, E.R. et al. Nat. Genet., 37 (2005),pp. 275-281
    [32] Loeys, B.L., Schwarze, U., Holm, T. et al. Aneurysm syndromes caused by mutations in the TGF-β receptor N. Engl. J. Med., 355 (2006),pp. 788-798
    [33] Matt, P., Habashi, J., Carrel, T. et al. Recent advances in understanding Marfan syndrome: should we now treat surgical patients with losartan? J. Thorac. Cardiovasc. Surg., 135 (2008),pp. 389-394
    [34] McLaughlin, P.J., Chen, Q., Horiguchi, M. et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice Mol. Cell Biol., 26 (2006),pp. 1700-1709
    [35] Milewicz, D.M., Guo, D.C., Tran-Fadulu, V. et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction Annu. Rev. Genomics Hum. Genet., 9 (2008),pp. 283-302
    [36] Mizuguchi, T., Collod-Beroud, G., Akiyama, T. et al. Nat. Genet., 36 (2004),pp. 855-860
    [37] Moustakas, A., Souchelnytskyi, S., Heldin, C.H. Smad regulation in TGF-β signal transduction J. Cell Sci., 114 (2001),pp. 4359-4369
    [38] Neptune, E.R., Frischmeyer, P.A., Arking, D.E. et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome Nat. Genet., 33 (2003),pp. 407-411
    [39] Owens, G.K., Kumar, M.S., Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease Physiol. Rev., 84 (2004),pp. 767-801
    [40] Pannu, H., Fadulu, V.T., Chang, J. et al. Mutations in transforming growth factor-β receptor type II cause familial thoracic aortic aneurysms and dissections Circulation, 112 (2005),pp. 513-520
    [41] Pannu, H., Tran-Fadulu, V., Papke, C.L. et al. Hum. Mol. Genet., 16 (2007),pp. 2453-2462
    [42] Park, S.O., Lee, Y.J., Seki, T. et al. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2 Blood, 111 (2008),pp. 633-642
    [43] Rodríguez-Vita, J., Sánchez-López, E., Esteban, V. et al. Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-β-independent mechanism Circulation, 111 (2005),pp. 2509-2517
    [44] Ruiz-Ortega, M., Rodríguez-Vita, J., Sanchez-Lopez, E. et al. TGF-β signaling in vascular fibrosis Cardiovasc. Res., 74 (2007),pp. 196-206
    [45] Tang, Y., Lee, K.S., Yang, H. et al. Genomics, 85 (2005),pp. 60-70
    [46] ten Dijke, P., Arthur, H.M. Extracellular control of TGFβ signaling in vascular development and disease Nat. Rev. Mol. Cell Biol., 8 (2007),pp. 857-869
    [47] Tian, M., Schiemann, W.P. The TGF-β paradox in human cancer: an update Future Oncol., 5 (2009),pp. 259-271
    [48] Vorp, D.A., Vande Geest, J.P. Biomechanical determinants of abdominal aortic aneurysm rupture Aterioscler. Thromb. Vasc. Biol., 25 (2005),pp. 1558-1566
    [49] Wang, W., Huang, X.R., Canlas, E. et al. Essential role of Smad3 in angiotensin II-induced vascular fibrosis Circ. Res., 98 (2006),pp. 1032-1039
    [50] Wang, Y., Ait-Oufella, H., Herbin, O. et al. TGF-β activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice J. Clin. Invest., 120 (2010),pp. 422-432
    [51] Zeller, J.L., Burke, A.E., Glass, R.M. JAMA patient page. Aortic aneurysms JAMA, 302 (2009),p. 2050
    [52] Zhu, L., Vranckx, R., Khau Van Kien, P. et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus Nat. Genet., 38 (2006),pp. 343-349
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  28
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-20
  • 录用日期:  2010-06-08
  • 修回日期:  2010-05-28
  • 网络出版日期:  2010-10-07
  • 刊出日期:  2010-09-20

目录

    /

    返回文章
    返回