留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships

Xin Zhao Jingyuan Lu Zhonghua Zhang Jiajin Hu Sanwen Huang Weiwei Jin

Xin Zhao, Jingyuan Lu, Zhonghua Zhang, Jiajin Hu, Sanwen Huang, Weiwei Jin. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships[J]. Journal of Genetics and Genomics, 2011, 38(1): 39-45. doi: 10.1016/j.jcg.2010.12.005
Citation: Xin Zhao, Jingyuan Lu, Zhonghua Zhang, Jiajin Hu, Sanwen Huang, Weiwei Jin. Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships[J]. Journal of Genetics and Genomics, 2011, 38(1): 39-45. doi: 10.1016/j.jcg.2010.12.005

doi: 10.1016/j.jcg.2010.12.005

Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships

More Information
    • 关键词:
    •  / 
    •  / 
    •  
    These authors contributed equally to this paper.
  • [1] Albert, P.S., Gao, Z., Danilova, T.V. et al. Diversity of chromosomal karyotypes in maize and its relatives Cytogenet. Genome Res., 129 (2010),pp. 6-16
    [2] Bradeen, J.M., Staub, J.E., Wye, C. et al. Genome, 44 (2001),pp. 111-119
    [3] Chen, J., Staub, J.E., Adelberg, J.W. et al. Can. J. Bot., 77 (1999),pp. 389-393
    [4] Ganal, M., Hemleben, V. Theor. Appl. Genet., 75 (1988),pp. 357-361
    [5] Ganal, M., Riede, I., Hemleben, V. J. Mol. Evol., 23 (1986),pp. 23-30
    [6] Gong, Z.Y., Liu, X.X., Tang, D. et al. Non-homologous chromosome pairing and crossover formation in haploid rice meiosis Chromosoma (2010)
    [7] Hall, S.E., Kettler, G., Preuss, D. Genome Res., 13 (2003),pp. 195-205
    [8] Han, Y.H., Zhang, Z.H., Liu, J.H. et al. Cytogenet. Genome Res., 122 (2008),pp. 80-88
    [9] Han, Y.H., Zhang, Z.H., Liu, C.X. et al. Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 14937-14941
    [10] Huang, S., Li, R., Zhang, Z. et al. Nat. Genet., 41 (2009),pp. 1275-1281
    [11] Jiang, J.M., Gill, B.S. Genome, 37 (1994),pp. 717-725
    [12] Jiang, J.M., Birchler, J.A., Parrott, W.A. et al. Molecular view of plant centromeres Trends Plant Sci., 8 (2003),pp. 570-575
    [13] Koo, D.H., Hur, Y., Jin, D.C. et al. Mol. Cells, 13 (2002),pp. 413-418
    [14] Kumar, A., Bennetzen, J.L. Plant retrotransposons Annu. Rev. Genet., 33 (1999),pp. 479-532
    [15] Lamb, J.C., Meyer, J.M., Corcoran, B. et al. Distinct chromosomal distributions of highly repetitive sequences in maize Chromosome Res., 15 (2007),pp. 33-49
    [16] Lee, C., Stanyon, R., Lin, C.C. et al. Conservation of human gamma-X centromeric satellite DNA among primates with an autosomal localization in certain Old World monkeys Chromosome Res, 7 (1999),pp. 43-47
    [17] Li, R., Ye, J., Li, S. et al. ReAS: recovery of ancestral sequences for transposable elements from the unassembled reads of a whole genome shotgun PLoS Computational Biol., 1 (2005),p. e43
    [18] Linares, C., Ferrer, E., Fominaya, A. Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 12450-12455
    [19] Liu, C.X., Liu, J.H., Li, H. et al. Cytogenet. Genome Res., 129 (2010),pp. 1-3
    [20] Macas, J., Navrátilová, A., Koblížková, A. Chromosoma, 115 (2006),pp. 437-447
    [21] Marín, S., Martín, A., Barro, F. Genome, 51 (2008),pp. 580-588
    [22] Mravinac, B., Plohl, M., Ugarkovic, D. Preservation and high sequence conservation of satellite DNAs indicate functional constraints J. Mol. Evol., 61 (2005),pp. 542-550
    [23] Mukai, Y., Nakahara, Y., Yamamoto, M. Genome, 36 (1993),pp. 489-494
    [24] Nagaki, K., Tsujimoto, H., Sasakuma, T. A novel repetitive sequence of sugar cane, SCEN family, locating on centromeric regions Chromosome Res., 6 (1998),pp. 295-302
    [25] Ohmido, N., Kijima, K., Ashikawa, I. et al. Visualization of the terminal structure of rice chromosomes 6 and 12 with multicolor FISH to chromosomes and extended DNA fibers Plant Mol. Biol., 47 (2001),pp. 413-421
    [26] Ouyang, S., Buell, C.R. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants Nucleic Acids Res., 32 (2004),pp. D360-D363
    [27] Plohl, M., Luchetti, A., Meštrović, N. et al. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero) chromatin Gene, 409 (2008),pp. 78-82
    [28] Ren, Y., Zhang, Z.H., Liu, J.H. et al. An integrated genetic and cytogenetic map of the cucumber genome PLoS ONE, 4 (2009),p. e5795
    [29] San, M.P., Tikhonov, A., Jin, Y.K. et al. Nested retrotransposons in the intergenic regions of the maize genome Science, 274 (1996),pp. 765-768
    [30] Sharma, S., Raina, S.N. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes Cytogenet. Genome Res., 109 (2005),pp. 15-26
    [31] She, C.W., Jiang, X.H., Song, Y.C. et al. Yi Chuan, 32 (2010),pp. 264-270
    [32] Zhang, W., Yi, C., Bao, W. et al. Plant Physiol., 139 (2005),pp. 306-315
  • 加载中
计量
  • 文章访问数:  98
  • HTML全文浏览量:  30
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-01
  • 录用日期:  2010-12-24
  • 修回日期:  2010-12-20
  • 网络出版日期:  2011-02-19
  • 刊出日期:  2011-01-20

目录

    /

    返回文章
    返回