留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Automated Behavioral Phenotyping Reveals Presymptomatic Alterations in a SCA3 Genetrap Mouse Model

Jeannette Hübener Nicolas Casadei Peter Teismann Mathias W. Seeliger Maria Björkqvist Stephan von Hörsten Olaf Riess Huu Phuc Nguyen

Jeannette Hübener, Nicolas Casadei, Peter Teismann, Mathias W. Seeliger, Maria Björkqvist, Stephan von Hörsten, Olaf Riess, Huu Phuc Nguyen. Automated Behavioral Phenotyping Reveals Presymptomatic Alterations in a SCA3 Genetrap Mouse Model[J]. Journal of Genetics and Genomics, 2012, 39(6): 287-299. doi: 10.1016/j.jgg.2012.04.009
Citation: Jeannette Hübener, Nicolas Casadei, Peter Teismann, Mathias W. Seeliger, Maria Björkqvist, Stephan von Hörsten, Olaf Riess, Huu Phuc Nguyen. Automated Behavioral Phenotyping Reveals Presymptomatic Alterations in a SCA3 Genetrap Mouse Model[J]. Journal of Genetics and Genomics, 2012, 39(6): 287-299. doi: 10.1016/j.jgg.2012.04.009

doi: 10.1016/j.jgg.2012.04.009

Automated Behavioral Phenotyping Reveals Presymptomatic Alterations in a SCA3 Genetrap Mouse Model

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Andrade, V.S., Rojas, D.B., Oliveira, L. et al. Creatine and pyruvate prevent behavioural and oxidative stress alterations caused by hypertryptophanemia in rats Mol. Cell. Biochem., 362 (2012),pp. 225-232
    [2] Arndt, S.S., Surjo, D. Methods for the behavioural phenotyping of mouse mutants. How to keep the overview Behav. Brain Res., 125 (2001),pp. 39-42
    [3] Bichelmeier, U., Schmidt, T., Hübener, J. et al. J. Neurosci., 27 (2007),pp. 7418-7428
    [4] Bierer, B.E., Sleckman, B.P., Ratnofsky, S.E. et al. The biologic roles of CD2, CD4, and CD8 in T-cell activation Annu. Rev. Immunol., 7 (1989),pp. 579-599
    [5] Björkqvist, M., Wild, E.J., Thiele, J. et al. A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease J. Exp. Med., 205 (2008),pp. 1869-1877
    [6] Brown, S.D., Chambon, P., de Angelis, M.H. EMPReSS: standardized phenotype screens for functional annotation of the mouse genome Nat. Genet., 37 (2005),p. 1155
    [7] Crawley, J.N. Behavioral phenotyping of rodents Comp. Med., 53 (2003),pp. 140-146
    [8] Cobbold, S.P., Jayasuriya, A., Nash, A. et al. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo Nature, 312 (1984),pp. 548-551
    [9] Davies, N.W., Guillemin, G., Brew, B.J. Tryptophan, neurodegeneration and HIV-associated neurocognitive disorder Int. J. Tryptophan Res., 3 (2010),pp. 121-140
    [10] Evert, B.O., Vogt, I.R., Kindermann, C. et al. Inflammatory genes are upregulated in expanded ataxin-3 expressing cell lines and Spinocerebellar Ataxia Type 3 brains J. Neurosci., 21 (2001),pp. 5389-5396
    [11] Ferrante, R.J., Andreassen, O.A., Dedeoglu, A. et al. Therapeutic effects of coenzyme Q10 and remacemide in transgenic mouse models of Huntington's disease J. Neurosci., 22 (2002),pp. 1592-1599
    [12] Gates, H., Mallon, A.M., Brown, S.D. et al. High-throughput mouse phenotyping Methods, 53 (2011),pp. 394-404
    [13] Gravestein, L.A., Nieland, J.D., Kruisbeek, A.M. et al. Novel mAbs reveal potent co-stimulatory activity of murine CD27 Int. Immunol., 7 (1995),pp. 551-557
    [14] Green, E.C., Gkoutos, G.V., Lad, H.V. et al. EMPReSS: European mouse phenotyping resource for standardized screens Bioinformatics, 21 (2005),pp. 2930-2931
    [15] Hirsch, S., Gordon, S. Polymorphic expression of a neutrophil differentiation antigen revealed by a monoclonal antibody 7/4 Immunogenetics, 18 (1983),pp. 229-239
    [16] Hübener, J., Vauti, F., Funke, C. et al. N-terminal ataxin-3 causes neurological symptoms with inclusions, endoplasmic reticulum stress and ribosomal dislocation Brain, 134 (2011),pp. 1925-1942
    [17] Huntington Study Group A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease Neurology, 57 (2001),pp. 397-404
    [18] Karelson, E., Bogdanovic, N., Garlind, A. et al. The cerebrocortical areas in normal brain aging and in Alzheimer's disease: noticeable differences in the liquid peroxidation level and in antioxidant defense Neurochem. Res., 26 (2001),pp. 353-361
    [19] Koo, G.C., Peppard, J.R. Establishment of monoclonal anti-NK-1.1 antibody Hybridoma, 3 (1981),pp. 301-303
    [20] Kraal, G., Rep, M., Janse, M. Macrophages in T and B cell compartments and other tissue macrophages recognized by monoclonal antibody MOMA-2 Scand. J. Immunol., 26 (1987),pp. 653-661
    [21] Krop, I., de Fougerolles, A.R., Hardy, R.R. et al. Self-renewal of B-1 lymphocytes is dependent on CD19 Eur. J. Immunol., 26 (1996),pp. 238-242
    [22] Kubo, R.T., Born, W., Kappler, J.W. et al. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors J. Immunol., 142 (1989),pp. 2736-2742
    [23] Landwehrmeyer, G.B., Dubois, B., de Yebenes, J.G. et al. Riluzole in Huntington's disease: a 3-year randomized controlled study Ann. Neurol., 62 (2007),pp. 262-272
    [24] Maddon, P.J., Molineaux, S.M., Maddon, D.E. et al. Structure and expression of human and mouse T4 genes Proc. Natl. Acad. Sci. USA, 84 (1987),pp. 9155-9159
    [25] Mendez-Alvarez, E., Soto-Otero, R., Hermida-Ameijeiras, A. et al. Effect of iron and manganese on hydroxyl radical production by 6-hydroxy-dopamine: mediation of antioxidants Free Radic. Biol. Med., 31 (2001),pp. 986-998
    [26] Nguyen, H.P., Björkqvist, M., Bode, F.J. et al. Serum levels of a subset of cytokines show high interindividual variability and are not altered in rats transgenic for Huntington's disease PLoS Curr., 2 (2010),p. RRN1190
    [27] Pouladi, M.A., Stanek, L.M., Xie, Y. et al. Marked differences in neurochemistry and aggregates despite similar behavioural and neuropathological features of Huntington disease in the full-length BACHD and YAC128 mice Hum. Mol. Genet., 21 (2012),pp. 2219-2232
    [28] Reznick, A.Z., Witt, E.H., Silbermann, M. et al. The threshold of age in exercise and antioxidants action EXS, 62 (1993),pp. 423-427
    [29] Riess, O., Rüb, U., Pastore, A. et al. SCA3: neurological features, pathogenesis and animal models Cerebellum, 7 (2008),pp. 125-137
    [30] Ross, I., Gentleman, R. R: a language for data analysis and graphics J. Comput. Graph. Stat., 5 (1996),pp. 299-314
    [31] Schiefer, J., Landwehrmeyer, G.B., Luesse, H.G. et al. Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington's disease Mov. Disord., 17 (2002),pp. 748-757
    [32] Schilling, G., Coonfield, M.L., Ross, C.A. et al. Coenzyme Q10 and remacemide hydrochloride ameliorate motor deficits in a Huntington's disease transgenic mouse model Neurosci. Lett., 315 (2001),pp. 149-153
    [33] Seeliger, M.W., Beck, S.C., Pereyra-Munoz, N. et al. Vision Res., 45 (2005),pp. 3512-3519
    [34] Steele, A.D., Jackson, W.S., King, O.D. et al. The power of automated high-resolution behavior analysis revealed by its application to mouse models of Huntington's and prion diseases Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 1983-1988
    [35] Urbach, Y.K., Bode, F.J., Nguyen, H.P. et al. Neurobehavioral tests in rat models of degenerative brain diseases Methods Mol. Biol., 597 (2010),pp. 333-356
    [36] Van der Heyde, H.C., Elloso, M.M., Chang, W.L. et al. Gamma delta T cells function in cell mediated immunity to acute blood-stage plasmodium chabaudi adami malaria J. Immunol., 154 (1995),pp. 3985-3990
    [37] van der Staay, F.J., Steckler, T. The fallacy of behavioral phenotyping without standardisation Genes Brain Behav., 1 (2002),pp. 9-13
    [38] Widner, B., Lablhuber, F., Walli, J. et al. Degradation of tryptophan in neurodegenerated disorders Adv. Exp. Med. Biol., 467 (1999),pp. 133-138
  • 加载中
计量
  • 文章访问数:  69
  • HTML全文浏览量:  14
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-03-19
  • 录用日期:  2012-04-23
  • 修回日期:  2012-04-18
  • 网络出版日期:  2012-05-15
  • 刊出日期:  2012-06-20

目录

    /

    返回文章
    返回