留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)

Guo Zong Ahong Wang Lu Wang Guohua Liang Minghong Gu Tao Sang Bin Han

Guo Zong, Ahong Wang, Lu Wang, Guohua Liang, Minghong Gu, Tao Sang, Bin Han. A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004
Citation: Guo Zong, Ahong Wang, Lu Wang, Guohua Liang, Minghong Gu, Tao Sang, Bin Han. A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)[J]. Journal of Genetics and Genomics, 2012, 39(7): 335-350. doi: 10.1016/j.jgg.2012.06.004

doi: 10.1016/j.jgg.2012.06.004

A Pyramid Breeding of Eight Grain-yield Related Quantitative Trait Loci Based on Marker-assistant and Phenotype Selection in Rice (Oryza sativa L.)

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Asano, K., Yamasaki, M., Takuno, S. et al. Artificial selection for a green revolution gene during japonica rice domestication Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 11034-11039
    [2] Ashikari, M., Matsuoka, M. Identification, isolation and pyramiding of quantitative trait loci for rice breeding Trends Plant Sci., 11 (2006),pp. 344-350
    [3] Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [4] Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. Nature, 465 (2010),pp. 627-631
    [5] Broman, K.W., Wu, H., Sen, S. et al. R/qtl: QTL mapping in experimental crosses Bioinformatics, 19 (2003),pp. 889-890
    [6] Chen, L., Zhao, Z., Liu, X. et al. Mol. Breeding, 27 (2010),pp. 247-258
    [7] Ding, X., Li, X., Xiong, L. Evaluation of near-isogenic lines for drought resistance QTL and fine mapping of a locus affecting flag leaf width, spikelet number, and root volume in rice Theor. Appl. Genet., 123 (2011),pp. 815-826
    [8] Fan, C., Xing, Y., Mao, H. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [9] George, A.
    [10] Gore, M.A., Chia, J.M., Elshire, R.J. et al. A first-generation haplotype map of maize Science, 326 (2009),pp. 1115-1117
    [11] Hayashi, K., Yoshida, H., Ashikawa, I. Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes Theor. Appl. Genet., 113 (2006),pp. 251-260
    [12] Huang, N., Angeles, E.R., Domingo, J. et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR Theor. Appl. Genet., 95 (1997),pp. 313-320
    [13] Huang, X.H., Feng, Q., Qian, Q. et al. High-throughput genotyping by whole-genome resequencing Genome Res., 19 (2009),pp. 1068-1076
    [14] Huang, X., Qian, Q., Liu, Z. et al. Natural variation at the DEP1 locus enhances grain yield in rice Nat. Genet., 41 (2009),pp. 494-497
    [15] Huang, X.H., Wei, X.H., Sang, T. et al. Genome-wide association studies of 14 agronomic traits in rice landraces Nat. Genet., 42 (2010),pp. 961-976
    [16] Kurakawa, T., Ueda, N., Maekawa, M. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme Nature, 445 (2007),pp. 652-655
    [17] Lai, X.H., Hinga, M.E., Lobos, K.B. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
    [18] Lander, E.S., Green, P., Abrahamson, J. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations Genomics, 93 (2009),p. 398
    [19] Li, J.X., Yu, S.B., Xu, C.G. et al. Theor. Appl. Genet., 101 (2000),pp. 248-254
    [20] Li, J., Thomson, M., McCouch, S.R. Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3 Genetics, 168 (2004),pp. 2187-2195
    [21] Li, Y., Fan, C., Xing, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice Nat. Genet., 43 (2011),pp. 1266-1269
    [22] Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [23] Lin, X.H., Xu, C.G., Zhang, Q.F. Improvement of bacterial blight resistance of ‘Minghui 63’, an elite Restorer line of hybrid rice, by molecular marker-assisted selection Crop Sci., 40 (2000),pp. 239-244
    [24] Lu, C., Shen, L., Tan, Z. et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population Theor. Appl. Genet., 93 (1996),pp. 1211-1217
    [25] Mao, H., Sun, S., Yao, J. et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19579-19584
    [26] McCouch, S.R., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207
    [27] Nordborg, M., Weigel, D. Next-generation genetics in plants Nature, 456 (2008),pp. 720-723
    [28] Redona, E.D., Mackill, D.J. Quantitative trait locus analysis for rice panicle and grain characteristics Theor. Appl. Genet., 96 (1998),pp. 957-963
    [29] Ribaut, J.M., Betran, J. Single large-scale marker-assisted selection (SLS-MAS) Mol. Breeding, 5 (1999),pp. 531-541
    [30] Rogers, S.O., Bandich, A.J.
    [31] Sasaki, A., Ashikari, M., Ueguchi-Tanaka, M. et al. Green revolution: a mutant gibberellin-synthesis gene in rice Nature, 416 (2002),pp. 701-702
    [32] Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [33] Song, X.J., Huang, W., Shi, M. et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase Nat. Genet., 39 (2007),pp. 623-630
    [34] Venkateswarlu, B., Visperas, R.M. Source-sink relationships in crop plants Int. Rice Research Paper Series, 125 (1987),pp. 1-19
    [35] Wang, S., Basten, C.J., Zeng, Z.B.
    [36] Wang, L., Wang, A., Huang, X. et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines Theor. Appl. Genet., 122 (2010),pp. 327-340
    [37] Xu, J., Zhao, Q., Du, P. et al. BMC Genomics, 11 (2010),p. 656
    [38] Zhang, Y.M., Xu, S. Mapping quantitative trait loci in F2 incorporating phenotypes of F3 progeny Genetics, 166 (2004),pp. 1981-1993
    [39] Zhou, P.Z., Tan, Y.T., He, Y.H. et al. Simultaneous improvement for four quality traits of Zhenshan 97, an elite parent of hybrid rice, by molecular marker-assisted selection Theor. Appl. Genet., 106 (2003),pp. 326-331
  • 加载中
计量
  • 文章访问数:  110
  • HTML全文浏览量:  44
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-18
  • 录用日期:  2012-06-18
  • 修回日期:  2012-05-17
  • 网络出版日期:  2012-06-29
  • 刊出日期:  2012-07-20

目录

    /

    返回文章
    返回