留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Myelopoiesis during Zebrafish Early Development

Jin Xu Linsen Du Zilong Wen

Jin Xu, Linsen Du, Zilong Wen. Myelopoiesis during Zebrafish Early Development[J]. Journal of Genetics and Genomics, 2012, 39(9): 435-442. doi: 10.1016/j.jgg.2012.06.005
Citation: Jin Xu, Linsen Du, Zilong Wen. Myelopoiesis during Zebrafish Early Development[J]. Journal of Genetics and Genomics, 2012, 39(9): 435-442. doi: 10.1016/j.jgg.2012.06.005

doi: 10.1016/j.jgg.2012.06.005

Myelopoiesis during Zebrafish Early Development

More Information
    Corresponding author: E-mail address: zilong@ust.hk (Zilong Wen)
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Bennett, C.M., Kanki, J.P., Rhodes, J. et al. Blood, 98 (2001),pp. 643-651
    [2] Bertrand, J.Y., Chi, N.C., Santoso, B. et al. Haematopoietic stem cells derive directly from aortic endothelium during development Nature, 464 (2010),pp. 108-111
    [3] Bertrand, J.Y., Kim, A.D., Violette, E.P. et al. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo Development, 134 (2007),pp. 4147-4456
    [4] Bolli, N., Payne, E.M., Grabher, C. et al. Blood, 115 (2010),pp. 3329-3340
    [5] Bukrinsky, A., Griffin, K.J., Zhao, Y. et al. Essential role of spi-1-like (spi-1l) in zebrafish myeloid cell differentiation Blood, 113 (2009),pp. 2038-2046
    [6] Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. et al. J. Cell Sci., 124 (2011),pp. 3053-3059
    [7] Corkery, D.P., Dellaire, G., Berman, J.N. Br. J. Haematol., 153 (2011),pp. 786-789
    [8] Craven, S.E., French, D., Ye, W. et al. Loss of Hspa9b in zebrafish recapitulates the ineffective hematopoiesis of the myelodysplastic syndrome Blood, 105 (2005),pp. 3528-3534
    [9] Daas, S.I., Coombs, A.J., Balci, T.B. et al. Blood, 119 (2012),pp. 3585-3594
    [10] Dai, Z.X., Yan, G., Chen, Y.H. et al. Forward genetic screening for zebrafish mutants defective in myelopoiesis J. South Med. Univ., 30 (2010),pp. 1230-1233
    [11] Dayyani, F., Wang, J., Yeh, J.R. et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival Blood, 111 (2008),pp. 4338-4347
    [12] Dobson, J.T., Seibert, J., Teh, E.M. et al. Carboxypeptidase A5 identifies a novel mast cell lineage in the zebrafish providing new insight into mast cell fate determination Blood, 112 (2008),pp. 2969-2972
    [13] Doyon, Y., McCammon, J.M., Miller, J.C. et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases Nat. Biotechnol., 26 (2008),pp. 702-708
    [14] Draper, B.W., Morcos, P.A., Kimmel, C.B. Genesis, 30 (2001),pp. 154-156
    [15] Driever, W., Solnica-Krezel, L., Schier, A.F. et al. A genetic screen for mutations affecting embryogenesis in zebrafish Development, 123 (1996),pp. 37-46
    [16] Ellett, F., Lieschke, G.J. Zebrafish as a model for vertebrate hematopoiesis Curr. Opin. Pharmacol., 10 (2010),pp. 563-570
    [17] Ellett, F., Pase, L., Hayman, J.W. et al. Blood, 117 (2011),pp. e49-e56
    [18] Forrester, A.M., Grabher, C., McBride, E.R. et al. NUP98-HOXA9-transgenic zebrafish develop a myeloproliferative neoplasm and provide new insight into mechanisms of myeloid leukaemogenesis Br. J. Haematol., 155 (2011),pp. 167-181
    [19] Galloway, J.L., Wingert, R.A., Thisse, C. et al. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos Dev. Cell, 8 (2005),pp. 109-116
    [20] Haffter, P., Granato, M., Brand, M. et al. Development, 123 (1996),pp. 1-36
    [21] Hall, C., Flores, M.V., Storm, T. et al. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish BMC Dev. Biol., 7 (2007),p. 42
    [22] Herbomel, P., Levraud, J.P. Imaging early macrophage differentiation, migration, and behaviors in live zebrafish embryos Methods Mol. Med., 105 (2005),pp. 199-214
    [23] Herbomel, P., Thisse, B., Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo Development, 126 (1999),pp. 3735-3745
    [24] Herbomel, P., Thisse, B., Thisse, C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process Dev. Biol., 238 (2001),pp. 274-288
    [25] Hogan, B.M., Layton, J.E., Pyati, U.J. et al. Specification of the primitive myeloid precursor pool requires signaling through Alk8 in zebrafish Curr. Biol., 16 (2006),pp. 506-511
    [26] Hsu, K., Traver, D., Kutok, J.L. et al. Blood, 104 (2004),pp. 1291-1297
    [27] Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [28] Jin, H., Li, L., Xu, J. et al. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop that confines Pu.1 expression Blood, 119 (2012),pp. 5239-5249
    [29] Jin, H., Sood, R., Xu, J. et al. Definitive hematopoietic stem/progenitor cells manifest distinct differentiation output in the zebrafish VDA and PBI Development, 136 (2009),pp. 647-654
    [30] Jin, H., Xu, J., Wen, Z. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development Blood, 109 (2007),pp. 5208-5214
    [31] Jing, L., Zon, L.I. Zebrafish as a model for normal and malignant hematopoiesis Dis. Model Mech., 4 (2011),pp. 433-438
    [32] Keegan, B.R., Meyer, D., Yelon, D. Organization of cardiac chamber progenitors in the zebrafish blastula Development, 131 (2004),pp. 3081-3091
    [33] Kissa, K., Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition Nature, 464 (2010),pp. 112-115
    [34] Kissa, K., Murayama, E., Zapata, A. et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization Blood, 111 (2008),pp. 1147-1156
    [35] Kitaguchi, T., Kawakami, K., Kawahara, A. Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis Mech. Dev., 126 (2009),pp. 314-323
    [36] Le Guyader, D., Redd, M.J., Colucci-Guyon, E. et al. Origins and unconventional behavior of neutrophils in developing zebrafish Blood, 111 (2008),pp. 132-141
    [37] Le, X., Langenau, D.M., Keefe, M.D. et al. Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 9410-9415
    [38] Li, L., Jin, H., Xu, J. et al. Blood, 117 (2011),pp. 1359-1369
    [39] Liao, E.C., Paw, B.H., Oates, A.C. et al. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish Genes Dev., 12 (1998),pp. 621-626
    [40] Lieschke, G.J., Oates, A.C., Crowhurst, M.O. et al. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish Blood, 98 (2001),pp. 3087-3096
    [41] Lieschke, G.J., Oates, A.C., Paw, B.H. et al. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning Dev. Biol., 246 (2002),pp. 274-295
    [42] Liongue, C., Hall, C.J., O'Connell, B.A. et al. Zebrafish granulocyte colony-stimulating factor receptor signaling promotes myelopoiesis and myeloid cell migration Blood, 113 (2009),pp. 2535-2546
    [43] Liu, F., Patient, R. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis Circ. Res., 103 (2008),pp. 1147-1154
    [44] Liu, F., Wen, Z. Cloning and expression pattern of the lysozyme C gene in zebrafish Mech. Dev., 113 (2002),pp. 69-72
    [45] Lugo-Villarino, G., Balla, K.M., Stachura, D.L. et al. Identification of dendritic antigen-presenting cells in the zebrafish Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 15850-15855
    [46] Mathias, J.R., Perrin, B.J., Liu, T.X. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish J. Leukoc. Biol., 80 (2006),pp. 1281-1288
    [47] Monteiro, R., Pouget, C., Patient, R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1gamma EMBO J., 30 (2011),pp. 1093-1103
    [48] Murayama, E., Kissa, K., Zapata, A. et al. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development Immunity, 25 (2006),pp. 963-975
    [49] Nasevicius, A., Ekker, S.C. Effective targeted gene ‘knockdown’ in zebrafish Nat. Genet., 26 (2000),pp. 216-220
    [50] Payne, E.M., Bolli, N., Rhodes, J. et al. Ddx18 is essential for cell-cycle progression in zebrafish hematopoietic cells and is mutated in human AML Blood, 118 (2011),pp. 903-915
    [51] Peri, F., Nusslein-Volhard, C. Cell, 133 (2008),pp. 916-927
    [52] Peterson, R.T., Link, B.A., Dowling, J.E. et al. Small molecule developmental screens reveal the logic and timing of vertebrate development Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 12965-12969
    [53] Peterson, R.T., Shaw, S.Y., Peterson, T.A. et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation Nat. Biotechnol., 22 (2004),pp. 595-599
    [54] Pruvot, B., Jacquel, A., Droin, N. et al. Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy Haematologica, 96 (2011),pp. 612-616
    [55] Renshaw, S.A., Loynes, C.A., Trushell, D.M. et al. A transgenic zebrafish model of neutrophilic inflammation Blood, 108 (2006),pp. 3976-3978
    [56] Rhodes, J., Hagen, A., Hsu, K. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish Dev. Cell, 8 (2005),pp. 97-108
    [57] Ridges, S., Heaton, W.L., Joshi, D. et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia Blood, 119 (2012),pp. 5621-5631
    [58] Sander, J.D., Cade, L., Khayter, C. et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs Nat. Biotechnol., 29 (2011),pp. 697-698
    [59] Schoenebeck, J.J., Keegan, B.R., Yelon, D. Vessel and blood specification override cardiac potential in anterior mesoderm Dev. Cell, 13 (2007),pp. 254-267
    [60] Serluca, F.C., Fishman, M.C. Cell lineage tracing in heart development Methods Cell Biol., 59 (1999),pp. 359-365
    [61] Serluca, F.C., Fishman, M.C. Pre-pattern in the pronephric kidney field of zebrafish Development, 128 (2001),pp. 2233-2241
    [62] Stainier, D.Y., Weinstein, B.M., , Zon, L.I. et al. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages Development, 121 (1995),pp. 3141-3150
    [63] Su, F., Juarez, M.A., Cooke, C.L. et al. Differential regulation of primitive myelopoiesis in the zebrafish by Spi-1/Pu.1 and C/ebp1 Zebrafish, 4 (2007),pp. 187-199
    [64] Sumanas, S., Gomez, G., Zhao, Y. et al. Interplay among Etsrp/ER71, Scl, and Alk8 signaling controls endothelial and myeloid cell formation Blood, 111 (2008),pp. 4500-4510
    [65] Sumanas, S., Lin, S. Ets1-related protein is a key regulator of vasculogenesis in zebrafish PLoS Biol., 4 (2006),p. e10
    [66] Thompson, M.A., Ransom, D.G., Pratt, S.J. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis Dev. Biol., 197 (1998),pp. 248-269
    [67] Vogeli, K.M., Jin, S.W., Martin, G.R. et al. A common progenitor for haematopoietic and endothelial lineages in the zebrafish gastrula Nature, 443 (2006),pp. 337-339
    [68] Ward, A.C., McPhee, D.O., Condron, M.M. et al. Blood, 102 (2003),pp. 3238-3240
    [69] Warga, R.M., Kane, D.A., Ho, R.K. Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation Dev. Cell, 16 (2009),pp. 744-755
    [70] Wei, W., Wen, L., Huang, P. et al. Gfi1.1 regulates hematopoietic lineage differentiation during zebrafish embryogenesis Cell Res., 18 (2008),pp. 677-685
    [71] Wienholds, E., Koudijs, M.J., van Eeden, F.J. et al. The microRNA-producing enzyme Dicer1 is essential for zebrafish development Nat. Genet., 35 (2003),pp. 217-218
    [72] Wienholds, E., Schulte-Merker, S., Walderich, B. et al. Science, 297 (2002),pp. 99-102
    [73] Willett, C.E., Cortes, A., Zuasti, A. et al. Early hematopoiesis and developing lymphoid organs in the zebrafish Dev. Dyn., 214 (1999),pp. 323-336
    [74] Wittamer, V., Bertrand, J.Y., Gutschow, P.W. et al. Characterization of the mononuclear phagocyte system in zebrafish Blood, 117 (2011),pp. 7126-7135
    [75] Yeh, J.R., Munson, K.M., Chao, Y.L. et al. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression Development, 135 (2008),pp. 401-410
    [76] Yeh, J.R., Munson, K.M., Elagib, K.E. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation Nat. Chem. Biol., 5 (2009),pp. 236-243
    [77] Yuan, H., Zhou, J., Deng, M. et al. Sumoylation of CCAAT/enhancer-binding protein alpha promotes the biased primitive hematopoiesis of zebrafish Blood, 117 (2011),pp. 7014-7020
    [78] Zakrzewska, A., Cui, C., Stockhammer, O.W. et al. Macrophage-specific gene functions in Spi1-directed innate immunity Blood, 116 (2010),pp. e1-e11
    [79] Zhang, Y., Bai, X.T., Zhu, K.Y. et al. J. Immunol., 181 (2008),pp. 2155-2164
    [80] Zhuravleva, J., Paggetti, J., Martin, L. et al. MOZ/TIF2-induced acute myeloid leukaemia in transgenic fish Br. J. Haematol., 143 (2008),pp. 378-382
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  37
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-02
  • 录用日期:  2012-06-21
  • 修回日期:  2012-06-21
  • 网络出版日期:  2012-08-04
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回