留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish

Jingang Liu Lu Gong Changqing Chang Cong Liu Jinrong Peng Jun Chen

Jingang Liu, Lu Gong, Changqing Chang, Cong Liu, Jinrong Peng, Jun Chen. Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish[J]. Journal of Genetics and Genomics, 2012, 39(9): 489-502. doi: 10.1016/j.jgg.2012.07.009
Citation: Jingang Liu, Lu Gong, Changqing Chang, Cong Liu, Jinrong Peng, Jun Chen. Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish[J]. Journal of Genetics and Genomics, 2012, 39(9): 489-502. doi: 10.1016/j.jgg.2012.07.009

doi: 10.1016/j.jgg.2012.07.009

Development of Novel Visual-Plus Quantitative Analysis Systems for Studying DNA Double-Strand Break Repairs in Zebrafish

More Information
    Corresponding author: E-mail address: pengjr@zju.edu.cn (Jinrong Peng); E-mail address: chenjun2009@zju.edu.cn (Jun Chen)
  • Present address: College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510650, China.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    Present address: College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510650, China.
  • [1] Adams, B.R., Hawkins, A.J., Povirk, L.F. et al. ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells Aging (Albany NY), 2 (2010),pp. 582-596
    [2] Akyuz, N., Boehden, G.S., Susse, S. et al. DNA substrate dependence of p53-mediated regulation of double-strand break repair Mol. Cell. Biol., 22 (2002),pp. 6306-6317
    [3] Certo, M.T., Ryu, B.Y., Annis, J.E. et al. Tracking genome engineering outcome at individual DNA breakpoints Nat. Methods, 8 (2011),pp. 671-676
    [4] Chen, J., Ng, S.M., Chang, C. et al. Genes Dev., 23 (2009),pp. 278-290
    [5] Ciccia, A., Elledge, S.J. The DNA damage response: making it safe to play with knives Mol. Cell, 40 (2010),pp. 179-204
    [6] Colleaux, L., D'Auriol, L., Galibert, F. et al. Recognition and cleavage site of the intron-encoded omega transposase Proc. Natl. Acad. Sci. USA, 85 (1988),pp. 6022-6026
    [7] Dudas, A., Chovanec, M. DNA double-strand break repair by homologous recombination Mutat. Res., 566 (2004),pp. 131-167
    [8] Hagmann, M., Adlkofer, K., Pfeiffer, P. et al. Biol. Chem. Hoppe Seyler, 377 (1996),pp. 239-250
    [9] Hagmann, M., Bruggmann, R., Xue, L. et al. Biol. Chem., 379 (1998),pp. 673-681
    [10] Hakem, R. DNA-damage repair; the good, the bad, and the ugly EMBO J., 27 (2008),pp. 589-605
    [11] Hiom, K. Coping with DNA double strand breaks DNA Repair (Amst), 9 (2010),pp. 1256-1263
    [12] Ivanov, E.L., Sugawara, N., Fishman-Lobell, J. et al. Genetics, 142 (1996),pp. 693-704
    [13] Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases Trends Genet., 12 (1996),pp. 224-228
    [14] Keimling, M., Wiesmuller, L. DNA double-strand break repair activities in mammary epithelial cells – influence of endogenous p53 variants Carcinogenesis, 30 (2009),pp. 1260-1268
    [15] Lieber, M.R., Ma, Y., Pannicke, U. et al. Mechanism and regulation of human non-homologous DNA end-joining Nat. Rev. Mol. Cell Biol., 4 (2003),pp. 712-720
    [16] Mills, K.D., Ferguson, D.O., Essers, J. et al. Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability Genes Dev., 18 (2004),pp. 1283-1292
    [17] Orii, K.E., Lee, Y., Kondo, N. et al. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 10017-10022
    [18] Pierce, A.J., Johnson, R.D., Thompson, L.H. et al. XRCC3 promotes homology-directed repair of DNA damage in mammalian cells Genes Dev., 13 (1999),pp. 2633-2638
    [19] Porter, G., Westmoreland, J., Priebe, S. et al. Genetics, 143 (1996),pp. 755-767
    [20] Sung, P., Krejci, L., Van, K.S. et al. Rad51 recombinase and recombination mediators J. Biol. Chem., 278 (2003),pp. 42729-42732
    [21] Thoms, K.M., Kuschal, C., Emmert, S. Lessons learned from DNA repair defective syndromes Exp. Dermatol., 16 (2007),pp. 532-544
    [22] Tichy, E.D., Pillai, R., Deng, L. et al. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks Stem Cells Dev., 19 (2010),pp. 1699-1711
    [23] Tichy, E.D., Stambrook, P.J. DNA repair in murine embryonic stem cells and differentiated cells Exp. Cell Res., 314 (2008),pp. 1929-1936
    [24] Weinstock, D.M., Nakanishi, K., Helgadottir, H.R. et al. Assaying double-strand break repair pathway choice in mammalian cells using a targeted endonuclease or the RAG recombinase Methods Enzymol., 409 (2006),pp. 524-540
    [25] Weterings, E., Chen, D.J. The endless tale of non-homologous end-joining Cell Res., 18 (2008),pp. 114-124
    [26] Wilson, J.H., Berget, P.B., Pipas, J.M. Somatic cells efficiently join unrelated DNA segments end-to-end Mol. Cell. Biol., 2 (1982),pp. 1258-1269
  • 加载中
计量
  • 文章访问数:  82
  • HTML全文浏览量:  23
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-02
  • 录用日期:  2012-07-18
  • 修回日期:  2012-06-26
  • 网络出版日期:  2012-08-23
  • 刊出日期:  2012-09-20

目录

    /

    返回文章
    返回