留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications

Chuanxian Wei Jiyong Liu Zhongsheng Yu Bo Zhang Guanjun Gao Renjie Jiao

Chuanxian Wei, Jiyong Liu, Zhongsheng Yu, Bo Zhang, Guanjun Gao, Renjie Jiao. TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications[J]. Journal of Genetics and Genomics, 2013, 40(6): 281-289. doi: 10.1016/j.jgg.2013.03.013
Citation: Chuanxian Wei, Jiyong Liu, Zhongsheng Yu, Bo Zhang, Guanjun Gao, Renjie Jiao. TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications[J]. Journal of Genetics and Genomics, 2013, 40(6): 281-289. doi: 10.1016/j.jgg.2013.03.013

doi: 10.1016/j.jgg.2013.03.013

TALEN or Cas9 – Rapid, Efficient and Specific Choices for Genome Modifications

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Barnes, D.E. Non-homologous end joining as a mechanism of DNA repair Curr. Biol., 11 (2001),pp. R455-R457
    [2] Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
    [3] Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [4] Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
    [5] Boch, J., Bonas, U. Annu. Rev. Phytopathol., 48 (2010),pp. 419-436
    [6] Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [7] Bogdanove, A.J., Voytas, D.F. TAL effectors: customizable proteins for DNA targeting Science, 333 (2011),pp. 1843-1846
    [8] Bolotin, A., Quinquis, B., Sorokin, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin Microbiology, 151 (2005),pp. 2551-2561
    [9] Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
    [10] Briggs, A.W., Rios, X., Chari, R. et al. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers Nucleic Acids Res., 40 (2012),p. e117
    [11] Carlson, D.F., Tan, W., Lillico, S.G. et al. Efficient TALEN-mediated gene knockout in livestock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17382-17387
    [12] Carroll, D. A CRISPR approach to gene targeting Mol. Ther., 20 (2012),pp. 1658-1660
    [13] Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [14] Chen, F., Pruett-Miller, S.M., Huang, Y. et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases Nat. Methods, 8 (2011),pp. 753-755
    [15] Chen, Y., Dui, W., Yu, Z. et al. Protein Cell, 1 (2010),pp. 478-490
    [16] Cho, S.W., Kim, S., Kim, J.M. et al. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease Nat. Biotechnol., 31 (2013),pp. 230-232
    [17] Choi, S.M., Kim, Y., Shim, J.S. et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells Hepatology (2013)
    [18] Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [19] Cong, L., Zhou, R., Kuo, Y.C. et al. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains Nat. Commun., 3 (2012),p. 968
    [20] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [21] Cradick, T.J., Ambrosini, G., Iseli, C. et al. ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites BMC Bioinformatics, 12 (2011),p. 152
    [22] Deng, D., Yan, C., Pan, X. et al. Structural basis for sequence-specific recognition of DNA by TAL effectors Science, 335 (2012),pp. 720-723
    [23] Ding, Q., Lee, Y.K., Schaefer, E.A. et al. A TALEN genome-editing system for generating human stem cell-based disease models Cell Stem Cell, 12 (2013),pp. 238-251
    [24] Du, G., Liu, X., Chen, X. et al. Mol. Biol. Cell, 21 (2010),pp. 2128-2137
    [25] Dui, W., Lu, W., Ma, J. et al. J. Genet. Genomics, 39 (2012),pp. 397-413
    [26] Eeken, J.C., Sobels, F.H. Mutat. Res., 110 (1983),pp. 297-310
    [27] Esvelt, K.M., Wang, H.H. Genome-scale engineering for systems and synthetic biology Mol. Syst. Biol., 9 (2013),p. 641
    [28] Garg, A., Lohmueller, J.J., Silver, P.A. et al. Engineering synthetic TAL effectors with orthogonal target sites Nucleic Acids Res., 40 (2012),pp. 7584-7595
    [29] Garneau, J.E., Dupuis, M.E., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [30] Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
    [31] Golic, K.G., Golic, M.M. Genetics, 144 (1996),pp. 1693-1711
    [32] Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [33] Hale, C.R., Zhao, P., Olson, S. et al. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex Cell, 139 (2009),pp. 945-956
    [34] Hockemeyer, D., Wang, H., Kiani, S. et al. Genetic engineering of human pluripotent cells using TALE nucleases Nat. Biotechnol., 29 (2011),pp. 731-734
    [35] Horvath, P., Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea Science, 327 (2010),pp. 167-170
    [36] Huang, H., Jiao, R. Roles of chromatin assembly factor 1 in the epigenetic control of chromatin plasticity Sci. China Life. Sci., 55 (2012),pp. 15-19
    [37] Huang, H., Yu, Z., Zhang, S. et al. J. Cell Sci., 123 (2010),pp. 2853-2861
    [38] Huang, H., Du, G., Chen, H. et al. Development, 138 (2011),pp. 2477-2485
    [39] Huang, P., Xiao, A., Zhou, M. et al. Heritable gene targeting in zebrafish using customized TALENs Nat. Biotechnol., 29 (2011),pp. 699-700
    [40] Huang, P., Zhu, Z., Lin, S. et al. Reverse genetic approaches in zebrafish J. Genet. Genomics, 39 (2012),pp. 421-433
    [41] Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [42] Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
    [43] Jiang, W., Bikard, D., Cox, D. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 233-239
    [44] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [45] Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells eLife, 2 (2013),p. e00471
    [46] Jore, M.M., Lundgren, M., van Duijn, E. et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade Nat. Struct. Mol. Biol., 18 (2011),pp. 529-536
    [47] Karginov, F.V., Hannon, G.J. The CRISPR system: small RNA-guided defense in bacteria and archaea Mol. Cell, 37 (2010),pp. 7-19
    [48] Kay, S., Hahn, S., Marois, E. et al. A bacterial effector acts as a plant transcription factor and induces a cell size regulator Science, 318 (2007),pp. 648-651
    [49] Kim, Y.G., Cha, J., Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
    [50] Lei, Y., Guo, X., Liu, Y. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
    [51] Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [52] Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [53] Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway Annu. Rev. Biochem., 79 (2010),pp. 181-211
    [54] Liu, J., Wu, Q., He, D. et al. J. Genet. Genomics, 38 (2011),pp. 225-234
    [55] Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [56] Maeder, M.L., Linder, S.J., Reyon, D. et al. Robust, synergistic regulation of human gene expression using TALE activators Nat. Methods, 10 (2013),pp. 243-245
    [57] Mak, A.N., Bradley, P., Cernadas, R.A. et al. The crystal structure of TAL effector PthXo1 bound to its DNA target Science, 335 (2012),pp. 716-719
    [58] Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [59] Marx, J.L. Science, 218 (1982),pp. 364-365
    [60] Melton, D.W. Gene targeting in the mouse Bioessays, 16 (1994),pp. 633-638
    [61] Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [62] Morbitzer, R., Romer, P., Boch, J. et al. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 21617-21622
    [63] Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [64] Ochiai, H., Sakamoto, N., Fujita, K. et al. Zinc-finger nuclease-mediated targeted insertion of reporter genes for quantitative imaging of gene expression in sea urchin embryos Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10915-10920
    [65] Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [66] Reyon, D., Khayter, C., Regan, M.R. et al. Engineering designer transcription activator-like effector nucleases (TALENs) by REAL or REAL-Fast assembly Curr. Protoc. Mol. Biol. (2012)
    [67] Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
    [68] Romer, P., Hahn, S., Jordan, T. et al. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene Science, 318 (2007),pp. 645-648
    [69] Rubin, G.M., Spradling, A.C. Science, 218 (1982),pp. 348-353
    [70] Sanjana, N.E., Cong, L., Zhou, Y. et al. A transcription activator-like effector toolbox for genome engineering Nat. Protoc., 7 (2012),pp. 171-192
    [71] Shen, Y., Huang, P., Zhang, B. A protocol for TALEN construction and gene targeting in zebrafish Hereditas (Beijing), 35 (2013),pp. 533-544
    [72] Shen, Y., Xiao, A., Huang, P. et al. TALE nuclease engineering and targeted genome modification Hereditas (Beijing), 35 (2013),pp. 395-409
    [73] Solnica-Krezel, L., Schier, A.F., Driever, W. Efficient recovery of ENU-induced mutations from the zebrafish germline Genetics, 136 (1994),pp. 1401-1420
    [74] Song, Y., He, F., Xie, G. et al. Dev. Biol., 311 (2007),pp. 213-222
    [75] Sorek, R., Kunin, V., Hugenholtz, P. CRISPR – a widespread system that provides acquired resistance against phages in bacteria and archaea Nat. Rev. Microbiol., 6 (2008),pp. 181-186
    [76] Streubel, J., Blucher, C., Landgraf, A. et al. TAL effector RVD specificities and efficiencies Nat. Biotechnol., 30 (2012),pp. 593-595
    [77] Sun, N., Liang, J., Abil, Z. et al. Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease Mol. Biosyst., 8 (2012),pp. 1255-1263
    [78] Sung, Y.H., Baek, I.J., Kim, D.H. et al. Knockout mice created by TALEN-mediated gene targeting Nat. Biotechnol., 31 (2013),pp. 23-24
    [79] Tesson, L., Usal, C., Menoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [80] Thomas, K.R., Capecchi, M.R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells Cell, 51 (1987),pp. 503-512
    [81] Tong, C., Huang, G., Ashton, C. et al. Rapid and cost-effective gene targeting in rat embryonic stem cells by TALENs J. Genet. Genomics, 39 (2012),pp. 275-280
    [82] Urnov, F.D., Rebar, E.J., Holmes, M.C. et al. Genome editing with engineered zinc finger nucleases Nat. Rev. Genet., 11 (2010),pp. 636-646
    [83] van den Bosch, M., Lohman, P.H., Pastink, A. DNA double-strand break repair by homologous recombination Biol. Chem., 383 (2002),pp. 873-892
    [84] Weber, E., Gruetzner, R., Werner, S. et al. Assembly of designer TAL effectors by Golden Gate cloning PLoS ONE, 6 (2011),p. e19722
    [85] Wood, A.J., Lo, T.W., Zeitler, B. et al. Targeted genome editing across species using ZFNs and TALENs Science, 333 (2011),p. 307
    [86] Xie, G., Zhang, H., Du, G. et al. PLoS ONE, 7 (2012),p. e36362
    [87] Xu, T., Rubin, G.M. Development, 117 (1993),pp. 1223-1237
    [88] Xu, Y., Lei, Z., Huang, H. et al. PLoS ONE, 4 (2009),p. e6107
    [89] Yu, Z.S., Jiao, R. Front. Biol., 5 (2010),pp. 238-245
    [90] Zhang, Y., Zhang, F., Li, X. et al. Transcription activator-like effector nucleases enable efficient plant genome engineering Plant Physiol., 161 (2013),pp. 20-27
    [91] Zu, Y., Tong, X., Wang, Z. et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish Nat. Methods (2013)
  • 加载中
计量
  • 文章访问数:  121
  • HTML全文浏览量:  40
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-09
  • 录用日期:  2013-03-24
  • 修回日期:  2013-03-18
  • 网络出版日期:  2013-04-12
  • 刊出日期:  2013-06-20

目录

    /

    返回文章
    返回