留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lipidomics as a Principal Tool for Advancing Biomedical Research

Sin Man Lam Guanghou Shui

Sin Man Lam, Guanghou Shui. Lipidomics as a Principal Tool for Advancing Biomedical Research[J]. Journal of Genetics and Genomics, 2013, 40(8): 375-390. doi: 10.1016/j.jgg.2013.06.007
Citation: Sin Man Lam, Guanghou Shui. Lipidomics as a Principal Tool for Advancing Biomedical Research[J]. Journal of Genetics and Genomics, 2013, 40(8): 375-390. doi: 10.1016/j.jgg.2013.06.007

doi: 10.1016/j.jgg.2013.06.007

Lipidomics as a Principal Tool for Advancing Biomedical Research

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Aerts, J.M., Ottenhoff, R., Powlson, A.S. et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity Diabetes, 56 (2007),pp. 1341-1349
    [2] Agarwal, A.K., Arioglu, E., De Almeida, S. et al. Nat. Genet., 31 (2002),pp. 21-23
    [3] Agarwal, A.K., Garg, A. Genetic disorders of adipose tissue development, differentiation, and death Annu. Rev. Genomics Hum. Genet., 7 (2006),pp. 175-199
    [4] Aloia, R.C., Tian, H., Jensen, F.C. Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 5181-5185
    [5] Ashrafi, K., Chang, F.Y., Watts, J.L. et al. Nature, 421 (2003),pp. 268-272
    [6] Athenstaedt, K., Daum, G. J. Bacteriol., 179 (1997),pp. 7611-7616
    [7] Bankaitis, V.A., Aitken, J.R., Cleves, A.E. et al. An essential role for a phospholipid transfer protein in yeast Golgi function Nature, 347 (1990),pp. 561-562
    [8] Barceló-Coblijn, G., Golovko, M.Y., Weinhofer, I. et al. Brain neutral lipids mass is increased in alpha-synuclein gene-ablated mice J. Neurochem., 101 (2007),pp. 132-141
    [9] Bar-On, P., Crews, L., Koob, A.O. et al. J. Neurochem., 105 (2008),pp. 1656-1667
    [10] Barry, C.E., Lee, R.E., Mdluli, K. et al. Mycolic acids: structure, biosynthesis and physiological functions Prog. Lipid Res., 37 (1998),pp. 143-179
    [11] Bauer, R., Voelzmann, A., Breiden, B. et al. EMBO J., 28 (2009),pp. 3706-3716
    [12] Benghezal, M., Roubaty, C., Veepuri, V. et al. J. Biol. Chem., 282 (2007),pp. 30845-30855
    [13] Berman, D.E., Dall'Armi, C., Voronov, S.V. et al. Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism Nat. Neurosci., 11 (2008),pp. 547-554
    [14] Bijl, N., Sokolović, M., Vrins, C. et al. Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice Hepatology, 50 (2009),pp. 1431-1441
    [15] Bonham, L., Leung, D.W., White, T. et al. Lysophosphatidic acid acyltransferase-beta: a novel target for induction of tumour cell apoptosis Expert Opin. Ther. Targets, 7 (2003),pp. 643-661
    [16] Bosco, D.A., Fowler, D.M., Zhang, Q. et al. Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate alpha-synuclein fibrilization Nat. Chem. Biol., 2 (2006),pp. 249-253
    [17] Brooks, K.K., Liang, B., Watts, J.L. PloS ONE, 4 (2009),p. e7545
    [18] Brügger, B., Erben, G., Sandhoff, R. et al. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 2339-2344
    [19] Brügger, B., Glass, B., Haberkant, P. et al. The HIV lipidome: a raft with an unusual composition Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 2641-2646
    [20] Carvalho, M., Schwudke, D., Sampaio, J.L. et al. Survival strategies of a sterol auxotroph Development, 137 (2010),pp. 3675-3685
    [21] Chan, C., Qi, X., Li, M.W. et al. Recent developments of genomic research in soybean J. Genet. Genomics, 39 (2012),pp. 317-324
    [22] Chan, R.B., Oliveira, T.G., Cortes, E.P. et al. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease J. Biol. Chem., 287 (2012),pp. 2678-2688
    [23] Chan, R., Uchil, P.D., Jin, J. et al. Retroviruses human immunodeficiency virus and murine leukemia virus are enriched in phosphoinositides J. Virol., 82 (2008),pp. 11228-11238
    [24] Chavez, J.A., Knotts, T.A., Wang, L.P. et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids J. Biol. Chem., 278 (2003),pp. 10297-10303
    [25] Choo, H.J., Kim, J.H., Kwon, O.B. et al. Mitochondria are impaired in the adipocytes of type 2 diabetic mice Diabetologia, 49 (2006),pp. 784-791
    [26] Corbett, E.L., Watt, C.J., Walker, N. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic Arch. Intern. Med., 163 (2003),pp. 1009-1021
    [27] Cortés, V.A., Curtis, D.E., Sukumaran, S. et al. Molecular mechanisms of hepatic steatosis and insulin resistance in the AGPAT2-deficient mouse model of congenital generalized lipodystrophy Cell Metab., 9 (2009),pp. 165-176
    [28] Davignon, J., Gregg, R.E., Sing, C.F. Apolipoprotein E polymorphism and atherosclerosis Arteriosclerosis, 8 (1988),pp. 1-21
    [29] Deb, C., Daniel, J., Sirakova, T.D. et al. J. Biol. Chem., 281 (2006),pp. 3866-3875
    [30] Dehwah, M.A.S., Xu, A., Huang, Q. MicroRNAs and type 2 diabetes/obesity J. Genet. Genomics, 39 (2012),pp. 11-18
    [31] Dexter, D.T., Holley, A.E., Flitter, W.D. et al. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study Mov. Disord., 9 (1994),pp. 92-97
    [32] Diefenbach, C.S.M., Soslow, R.A., Iasonos, A. et al. Lysophosphatidic acid acyltransferase-beta (LPAAT-beta) is highly expressed in advanced ovarian cancer and is associated with aggressive histology and poor survival Cancer, 107 (2006),pp. 1511-1519
    [33] Dircks, L., Sul, H.S. Prog. Lipid Res., 38 (1999),pp. 461-479
    [34] Ehrt, S., Schnappinger, D. Nat. Med., 13 (2007),pp. 284-285
    [35] Ejsing, C.S., Sampaio, J.L., Surendranath, V. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 2136-2141
    [36] Ekroos, K., Chernushevich, I.V., Simons, K. et al. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-of-flight mass spectrometer Anal. Chem., 74 (2002),pp. 941-949
    [37] Elle, I.C., Olsen, L.C.B., Pultz, D. et al. FEBS Lett., 584 (2010),pp. 2183-2193
    [38] Exil, V.J., Silva Avila, D., Benedetto, A. et al. PloS ONE, 5 (2010),p. e14228
    [39] Fahy, E., Subramaniam, S., Brown, H.A. et al. A comprehensive classification system for lipids J. Lipid Res., 46 (2005),pp. 839-861
    [40] Fahy, E., Subramaniam, S., Murphy, R.C. et al. Update of the LIPID MAPS comprehensive classification system for lipids J. Lipid Res., 50 (2009),pp. S9-S14
    [41] Fan, N., Lai, L. Genetically modified pig models for human diseases J. Genet. Genomics, 40 (2013),pp. 67-73
    [42] Fei, W., Shui, G., Gaeta, B. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast J. Cell Biol., 180 (2008),pp. 473-482
    [43] Fitzgerald, M., Murphy, R.C. Electrospray mass spectrometry of human hair wax esters J. Lipid Res., 48 (2007),pp. 1231-1246
    [44] Fletcher, M.J. A colorimetric method for estimating serum triglycerides Clin. Chim. Acta, 22 (1968),pp. 393-397
    [45] Gai, W.P., Yuan, H.X., Li, X.Q. et al. Exp. Neurol., 166 (2000),pp. 324-333
    [46] Guan, X.L., Cestra, G., Shui, G. et al. Dev. Cell, 24 (2013),pp. 98-111
    [47] Guan, X.L., He, X., Ong, W.Y. et al. Non-targeted profiling of lipids during kainate-induced neuronal injury FASEB J., 20 (2006),pp. 1152-1161
    [48] Guan, X.L., Souza, C.M., Pichler, H. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology Mol. Biol. Cell, 20 (2009),pp. 2083-2095
    [49] Guan, X.L., Wenk, M.R. Yeast, 23 (2006),pp. 465-477
    [50] Halliday, G.M., Ophof, A., Broe, M. et al. Alpha-synuclein redistributes to neuromelanin lipid in the substantia nigra early in Parkinson's disease Brain, 128 (2005),pp. 2654-2664
    [51] Han, X.L., Gross, R.W. Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs Biochemistry, 29 (1990),pp. 4992-4996
    [52] Han, X.L., Gross, R.W. Alterations in membrane dynamics elicited by amphiphilic compounds are augmented in plasmenylcholine bilayers Biochim. Biophys. Acta, 1069 (1991),pp. 37-45
    [53] Han, X., Gross, R.W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry Anal. Biochem., 295 (2001),pp. 88-100
    [54] Han, X., Gross, R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics J. Lipid Res., 44 (2003),pp. 1071-1079
    [55] Hartmann, T., Kuchenbecker, J., Grimm, M.O.W. Alzheimer's disease: the lipid connection J. Neurochem., 103 (2007),pp. 159-170
    [56] Hermansson, M., Uphoff, A., Käkelä, R. et al. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry Anal. Chem., 77 (2005),pp. 2166-2175
    [57] Hishikawa, D., Shindou, H., Kobayashi, S. et al. Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 2830-2835
    [58] Holland, W.L., Brozinick, J.T., Wang, L.P. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance Cell Metab., 5 (2007),pp. 167-179
    [59] Hsu, F.F., Turk, J. Characterization of phosphatidylinositol, phosphatidylinositol-4-phosphate, and phosphatidylinositol-4,5-bisphosphate by electrospray ionization tandem mass spectrometry: a mechanistic study J. Am. Soc. Mass Spectrom., 11 (2000),pp. 986-999
    [60] Hsu, F.F., Turk, J. Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes J. Am. Soc. Mass Spectrom., 14 (2003),pp. 352-363
    [61] Huang, P., Zhu, Z., Lin, S. et al. Reverse genetic approaches in zebrafish J. Genet. Genomics, 39 (2012),pp. 421-433
    [62] Inokuchi, J.I. Membrane microdomains and insulin resistance FEBS Lett., 584 (2010),pp. 1864-1871
    [63] Jain, S., Stanford, N., Bhagwat, N. et al. J. Biol. Chem., 282 (2007),pp. 30562-30569
    [64] Kerwin, J.L., Tuininga, A.R., Ericsson, L.H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry J. Lipid Res., 35 (1994),pp. 1102-1114
    [65] Krumova, S.B., Laptenok, S.P., Kovács, L. et al. Digalactosyl-diacylglycerol-deficiency lowers the thermal stability of thylakoid membranes Photosyn. Res., 105 (2010),pp. 229-242
    [66] Kutik, S., Rissler, M., Guan, X.L. et al. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis J. Cell Biol., 183 (2008),pp. 1213-1221
    [67] Lee, L.H.W., Shui, G., Farooqui, A.A. et al. Lipidomic analyses of the mouse brain after antidepressant treatment: evidence for endogenous release of long-chain fatty acids? Int. J. Neuropsychopharmacol., 12 (2009),pp. 953-964
    [68] Lehmann, W.D., Koester, M., Erben, G. et al. Characterization and quantification of rat bile phosphatidylcholine by electrospray-tandem mass spectrometry Anal. Biochem., 246 (1997),pp. 102-110
    [69] Li, J., Romestaing, C., Han, X. et al. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity Cell Metab., 12 (2010),pp. 154-165
    [70] Li, S.F., Song, L.Y., Yin, W.B. et al. J. Genet. Genomics, 39 (2012),pp. 47-59
    [71] Lim, W.L.F., Lam, S.M., Shui, G. et al. Effects of high-fat, high- cholesterol diet on brain lipid profiles in apolipoprotein E ɛ3 and ɛ4 knock-in mice Neurobiol. Aging (2013)
    [72] Low, C.P., Shui, G., Liew, L.P. et al. Caspase-dependent and -independent lipotoxic cell-death pathways in fission yeast J. Cell Sci., 121 (2008),pp. 2671-2684
    [73] Low, K.L., Rao, P.S.S., Shui, G. et al. J. Bacteriol., 191 (2009),pp. 5037-5043
    [74] Low, K.L., Shui, G., Natter, K. et al. J. Biol. Chem., 285 (2010),pp. 21662-21670
    [75] Lwin, A., Orvisky, E., Goker-Alpan, O. et al. Glucocerebrosidase mutations in subjects with parkinsonism Mol. Genet. Metab., 81 (2004),pp. 70-73
    [76] Maasen, J.A. Mitochondria, body fat and type 2 diabetes: what is the connection? Minerva Med., 99 (2008),pp. 241-251
    [77] Mak, H.Y., Nelson, L.S., Basson, M. et al. Nat. Genet., 38 (2006),pp. 363-368
    [78] Mancuso, D.J., Kotzbauer, P., Wozniak, D.F. et al. J. Biol. Chem., 284 (2009),pp. 35632-35644
    [79] Melser, S., Molino, D., Batailler, B. et al. Links between lipid homeostasis, organelle morphodynamics and protein trafficking in eukaryotic and plant secretory pathways Plant Cell Rep., 30 (2011),pp. 177-193
    [80] Merrill, A.H., Sullards, M.C., Allegood, J.C. et al. Sphingolipidomics: high-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry Methods, 36 (2005),pp. 207-224
    [81] Montine, T.J., Montine, K.S., McMahan, W. et al. F2-isoprostanes in Alzheimer and other neurodegenerative diseases Antioxid. Redox Signal., 7 (2005),pp. 269-275
    [82] Nakamura, Y., Koizumi, R., Shui, G. et al. Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 20978-20983
    [83] Ndamukong, I., Jones, D.R., Lapko, H. et al. PloS ONE, 5 (2010),p. e13396
    [84] Neumann, J., Bras, J., Deas, E. et al. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease Brain, 132 (2009),pp. 1783-1794
    [85] Nguyen, D.H., Hildreth, J.E. Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts J. Virol., 74 (2000),pp. 3264-3272
    [86] Niemelä, P.S., Castillo, S., Sysi-Aho, M. et al. Bioinformatics and computational methods for lipidomics J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 877 (2009),pp. 2855-2862
    [87] Okamoto, Y., Higashiyama, H., Rong, J.X. et al. Comparison of mitochondrial and macrophage content between subcutaneous and visceral fat in db/db mice Exp. Mol. Pathol., 83 (2007),pp. 73-83
    [88] Oliveira, T.G., Chan, R.B., Tian, H. et al. Phospholipase d2 ablation ameliorates Alzheimer's disease-linked synaptic dysfunction and cognitive deficits J. Neurosci., 30 (2010),pp. 16419-16428
    [89] Ono, A., Freed, E.O. Role of lipid rafts in virus replication Adv. Virus Res., 64 (2005),pp. 311-358
    [90] O'Rourke, E.J., Soukas, A.A., Carr, C.E. et al. Cell Metab., 10 (2009),pp. 430-435
    [91] Parrish, N., Osterhout, G., Dionne, K. et al. J. Clin. Microbiol., 45 (2007),pp. 3915-3920
    [92] Peters, C., Li, M., Narasimhan, R. et al. Plant Cell, 22 (2010),pp. 2642-2659
    [93] Pickersgill, L., Litherland, G.J., Greenberg, A.S. et al. Key role for ceramides in mediating insulin resistance in human muscle cells J. Biol. Chem., 282 (2007),pp. 12583-12589
    [94] Pike, L.J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function J. Lipid Res., 47 (2006),pp. 1597-1598
    [95] Pulfer, M., Murphy, R.C. Electrospray mass spectrometry of phospholipids Mass Spectrom. Rev., 22 (2003),pp. 332-364
    [96] Puppala, J., Siddapuram, S.P., Akka, J. et al. Genetics of nonalcoholic fatty liver disease: an overview J. Genet. Genomics, 40 (2013),pp. 15-22
    [97] Rajendran, L., Simons, K. Lipid rafts and membrane dynamics J. Cell Sci., 118 (2005),pp. 1099-1102
    [98] Rappley, I., Myers, D.S., Milne, S.B. et al. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with α-synuclein genotype J. Neurochem., 111 (2009),pp. 15-25
    [99] Rong, J.X., Qiu, Y., Hansen, M.K. et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone Diabetes, 56 (2007),pp. 1751-1760
    [100] Ruipérez, V., Darios, F., Davletov, B. Alpha-synuclein, lipids and Parkinson's disease Prog. Lipid Res., 49 (2010),pp. 420-428
    [101] Sanchez-Mejia, R.O., Newman, J.W., Toh, S. et al. Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease Nat. Neurosci., 11 (2008),pp. 1311-1318
    [102] Savchenko, T., Walley, J.W., Chehab, E.W. et al. Arachidonic acid: an evolutionarily conserved signaling molecule modulates plant stress signaling networks Plant Cell, 22 (2010),pp. 3193-3205
    [103] Schwudke, D., Hannich, J.T., Surendranath, V. et al. Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra Anal. Chem., 79 (2007),pp. 4083-4093
    [104] Sharman, M.J., Shui, G., Fernandis, A.Z. et al. Profiling brain and plasma lipids in human APOE epsilon2, epsilon3, and epsilon4 knock-in mice using electrospray ionization mass spectrometry J. Alzheimers Dis., 20 (2010),pp. 105-111
    [105] Shindou, H., Shimizu, T. Acyl-CoA:lysophospholipid acyltransferases J. Biol. Chem., 284 (2009),pp. 1-5
    [106] Shui, G., Bendt, A.K., Jappar, I.A. et al. Mycolic acids as diagnostic markers for tuberculosis case detection in humans and drug efficacy in mice EMBO Mol. Med., 4 (2012),pp. 27-37
    [107] Shui, G., Bendt, A.K., Pethe, K. et al. Sensitive profiling of chemically diverse bioactive lipids J. Lipid Res., 48 (2007),pp. 1976-1984
    [108] Shui, G., Guan, X.L., Gopalakrishnan, P. et al. PloS ONE, 5 (2010),p. e11956
    [109] Shui, G., Guan, X.L., Low, C.P. et al. Mol. Biosyst., 6 (2010),pp. 1008-1017
    [110] Shui, G., Lam, S.M., Stebbins, J. et al. Polar lipid derangements in type 2 diabetes mellitus: potential pathological relevance of fatty acyl heterogeneity in sphingolipids Metabolomics, 9 (2013),pp. 786-799
    [111] Spillantini, M.G., Schmidt, M.L., Lee, V.M. et al. Alpha-synuclein in Lewy bodies Nature, 388 (1997),pp. 839-840
    [112] Springett, G.M., Bonham, L., Hummer, A. et al. Lysophosphatidic acid acyltransferase-beta is a prognostic marker and therapeutic target in gynecologic malignancies Cancer Res., 65 (2005),pp. 9415-9425
    [113] Srinivasan, S., Sadegh, L., Elle, I.C. et al. Cell Metab., 7 (2008),pp. 533-544
    [114] Sullards, M.C., Wang, E., Peng, Q. et al. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry Cell. Mol. Biol. (Noisy-le-grand), 49 (2003),pp. 789-797
    [115] Tian, Y., Bi, J., Shui, G. et al. PLoS Genet., 7 (2011),p. e1001364
    [116] van der Meer-Janssen, Y.P.M., van Galen, J., Batenburg, J.J. et al. Lipids in host-pathogen interactions: pathogens exploit the complexity of the host cell lipidome Prog. Lipid Res., 49 (2010),pp. 1-26
    [117] van Eijk, M., Aten, J., Bijl, N. et al. Reducing glycosphingolipid content in adipose tissue of obese mice restores insulin sensitivity, adipogenesis and reduces inflammation PloS ONE, 4 (2009),p. e4723
    [118] van Meer, G. Cellular lipidomics EMBO J., 24 (2005),pp. 3159-3165
    [119] Vergnes, L., Beigneux, A.P., Davis, R. et al. Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity J. Lipid Res., 47 (2006),pp. 745-754
    [120] Wayne, L.G., Sohaskey, C.D. Annu. Rev. Microbiol., 55 (2001),pp. 139-163
    [121] Welti, R., Wang, X. Lipid species profiling: a high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling Curr. Opin. Plant Biol., 7 (2004),pp. 337-344
    [122] Wenk, M.R. The emerging field of lipidomics Nat. Rev. Drug Discov., 4 (2005),pp. 594-610
    [123] Wenk, M.R. Lipidomics of host-pathogen interactions FEBS Lett., 580 (2006),pp. 5541-5551
    [124] Wild, S., Roglic, G., Green, A. et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030 Diabetes Care, 27 (2004),pp. 1047-1053
    [125] Yamashita, T., Hashiramoto, A., Haluzik, M. et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3 Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 3445-3449
    [126] Yang, K., Cheng, H., Gross, R.W. et al. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics Anal. Chem., 81 (2009),pp. 4356-4368
    [127] Yang, Q., Gong, Z.J., Zhou, Y. et al. Cell. Mol. Life Sci., 67 (2010),pp. 1477-1490
    [128] Yen, K., Le, T.T., Bansal, A. et al. PloS ONE, 5 (2010),p. e12810
    [129] Yetukuri, L., Ekroos, K., Vidal-Puig, A. et al. Informatics and computational strategies for the study of lipids Mol. Biosyst., 4 (2008),pp. 121-127
    [130] Yu, B., Wakao, S., Fan, J. et al. Plant Cell Physiol., 45 (2004),pp. 503-510
    [131] Zhao, H., Przybylska, M., Wu, I.H. et al. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of type 2 diabetes Diabetes, 56 (2007),pp. 1210-1218
    [132] Zheng, Z., Zou, J. J. Biol. Chem., 276 (2001),pp. 41710-41716
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  31
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-04
  • 录用日期:  2013-06-19
  • 修回日期:  2013-06-04
  • 网络出版日期:  2013-07-12
  • 刊出日期:  2013-08-20

目录

    /

    返回文章
    返回