留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

QTL Scanning for Rice Yield Using a Whole Genome SNP Array

Cong Tan Zhongmin Han Huihui Yu Wei Zhan Weibo Xie Xun Chen Hu Zhao Fasong Zhou Yongzhong Xing

Cong Tan, Zhongmin Han, Huihui Yu, Wei Zhan, Weibo Xie, Xun Chen, Hu Zhao, Fasong Zhou, Yongzhong Xing. QTL Scanning for Rice Yield Using a Whole Genome SNP Array[J]. Journal of Genetics and Genomics, 2013, 40(12): 629-638. doi: 10.1016/j.jgg.2013.06.009
Citation: Cong Tan, Zhongmin Han, Huihui Yu, Wei Zhan, Weibo Xie, Xun Chen, Hu Zhao, Fasong Zhou, Yongzhong Xing. QTL Scanning for Rice Yield Using a Whole Genome SNP Array[J]. Journal of Genetics and Genomics, 2013, 40(12): 629-638. doi: 10.1016/j.jgg.2013.06.009

doi: 10.1016/j.jgg.2013.06.009

QTL Scanning for Rice Yield Using a Whole Genome SNP Array

More Information
    Corresponding author: E-mail address: yzhxing@hotmail.com (Yongzhong Xing)
  • These authors contribute equally to the work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    These authors contribute equally to the work.
  • [1] Ashikari, M., Sakakibara, H., Lin, S. et al. Cytokinin oxidase regulates rice grain production Science, 309 (2005),pp. 741-745
    [2] Batley, J., Barker, G., O'Sullivan, H. et al. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data Plant Physiol., 132 (2003),pp. 84-91
    [3] Boststein, D., White, R.L., Skolnick, M. et al. Construction of genetic linkage map in man using restriction fragment length polymorphism Am. J. Hum. Genet., 32 (1980),pp. 314-331
    [4] Broman, K.W., Wu, H., Sen, Ś. et al. R/qtl: QTL mapping in experimental crosses Bioinformatics, 19 (2003),pp. 889-890
    [5] Chang, L., Ma, H., Xue, H.W. Cell Res., 19 (2009),pp. 768-782
    [6] Chen, M., Presting, G., Barbazuk, W.B. et al. An integrated physical and genetic map of the rice genome Plant Cell, 14 (2002),pp. 537-545
    [7] Chen, R., Zhao, X., Shao, Z. et al. Plant Cell, 19 (2007),pp. 847-861
    [8] Chin, J.H., Kim, J.H., Jiang, W. et al. Crop Sci. Biotech., 10 (2007),pp. 175-184
    [9] Cho, Y.C., Suh, J.P., Choi, I.S. et al. Treat Crop Res., 4 (2003),pp. 19-29
    [10] Duan, Y., Diao, Z., Liu, H. et al. Plant Mol. Biol., 74 (2010),pp. 605-615
    [11] Fan, C., Xing, Y., Mao, H. et al. Theor. Appl. Genet., 112 (2006),pp. 1164-1171
    [12] Gregorova, S., Forejt, J. Folia Biol., 46 (2000),pp. 31-41
    [13] Gupta, P.K., Rustgi, S., Mir, R.R. Array-based high-throughput DNA markers for crop improvement Heredity, 101 (2008),pp. 5-18
    [14] Han, M.J., Jung, K.H., Yi, G. et al. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development Plant Cell Physiol., 47 (2006),pp. 1457-1472
    [15] Harushima, Y., Yano, M., Shomura, A. et al. Genetics, 148 (1998),pp. 479-494
    [16] Hemamalini, G.S., Shashidhar, H.E., Hittalmani, S. Euphytica, 112 (2000),pp. 69-78
    [17] Hua, J.P., Xing, Y.Z., Xu, C.G. et al. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance Genetics, 162 (2002),pp. 1885-1895
    [18] Huang, X., Feng, Q., Qian, Q. et al. High-throughput genotyping by whole-genome resequencing Genome Res., 19 (2009),pp. 1068-1076
    [19] Huang, X., Zhao, Y., Wei, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm Nat. Genet., 44 (2011),pp. 32-41
    [20] Itabashi, E., Iwata, N., Fujii, S. et al. Plant J., 65 (2011),pp. 359-367
    [21] Jung, K.H., Han, M.J., Lee, Y.S. et al. Plant Cell, 17 (2005),pp. 2705-2722
    [22] Komorisono, M., Ueguchi-Tanaka, M., Aichi, I. et al. Plant Physiol., 138 (2005),pp. 1982-1993
    [23] Kosambi, D.D. The estimation of map distances from recombination values Ann. Hum. Genet., 12 (1943),pp. 172-175
    [24] Kota, R., Rudd, S., Facius, A. et al. Mol. Genet. Genomics, 270 (2003),pp. 24-33
    [25] Kurata, N., Nagamura, Y., Yamamoto, K. et al. A 300 kilobase interval genetic map of rice including 883 expressed sequences Nat. Genet., 8 (1994),pp. 365-372
    [26] Lange, C., Mittermayr, L., Dohm, J.C. et al. High-throughput identification of genetic markers using representational oligonucleotide microarray analysis Theor. Appl. Genet., 121 (2010),pp. 549-565
    [27] Li, H., Pinot, F., Sauveplane, V. et al. Plant Cell, 22 (2010),pp. 173-190
    [28] Li, N., Zhang, D.S., Liu, H.S. et al. Plant Cell, 18 (2006),pp. 2999-3014
    [29] Li, Y., Fan, C., Xing, Y. et al. Nature Genet., 43 (2011),pp. 1266-1269
    [30] Li, Z., Pinson, S.R., Park, W.D. et al. Genetics, 145 (1997),pp. 453-465
    [31] Lin, H.X., Qian, H.R., Zhuang, J.Y. et al. Theor. Appl. Genet., 92 (1996),pp. 920-927
    [32] Liu, T., Mao, D., Zhang, S. et al. Fine mapping SPP1, a QTL controlling the number of spikelet per panicle, to a BAC clone in rice (Oryza Sativa) Theor. Appl. Genet., 118 (2009),pp. 1509-1517
    [33] Lu, C., Shen, L., Tan, Z. et al. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population Theor. Appl. Genet., 93 (1996),pp. 1211-1217
    [34] Luo, L.J., Li, Z.K., Mei, H.W. et al. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components Genetics, 158 (2001),pp. 1755-1771
    [35] Mardis, E.R. Next-generation DNA sequencing methods Annu. Rev. Genomics Hum. Genet., 9 (2008),pp. 387-402
    [36] Marri, P.R., Sarla, N., Reddy, L.V. et al. BMC Genet., 6 (2005),p. 33
    [37] Matsuzaki, H., Dong, S., Loi, H. et al. Genotyping over 100,000 SNPs on a pair of oligonucleotide arrays Nat. Methods, 1 (2004),pp. 109-111
    [38] Muluvi, G.M., Sprent, J.I., Soranzo, N. et al. Mol. Ecol, 8 (1999),pp. 463-470
    [39] Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA Nucleic Acids Res., 8 (1980),pp. 4321-4326
    [40] Pasquini, G., Barba, M., Hadidi, A. et al. J. Virol. Methods, 147 (2008),pp. 118-126
    [41] Quinn, T.W., White, B.N. Mol. Biol. Evol., 4 (1987),pp. 126-143
    [42] Remington, D.L., Ungerer, M.C., Purugganan, M.D. Map-based cloning of quantitative trait loci: progress and prospects Genet. Res., 78 (2001),pp. 213-218
    [43] Shomura, A., Izawa, T., Ebana, K. et al. Deletion in a gene associated with grain size increased yields during rice domestication Nat. Genet., 40 (2008),pp. 1023-1028
    [44] Tan, Y.F., Xing, Y.Z., Li, J.X. et al. Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid Theor. Appl. Genet., 101 (2000),pp. 823-829
    [45] Temnykh, S., Park, W.D., Ayres, N. et al. Theor. Appl. Genet., 100 (2000),pp. 697-712
    [46] Thomson, M., Tai, T., McClung, A. et al. Theor. Appl. Genet., 107 (2003),pp. 479-493
    [47] Tian, F., Fu, Q., Zhu, Z.F. et al. Theor. Appl. Genet., 112 (2006),pp. 570-580
    [48] Tsuchihashi, Z., Dracopoli, N.C. Progress in high throughput SNP genotyping methods Pharmacogenomics J., 2 (2002),pp. 103-110
    [49] Vales, M.I., Schön, C.C., Capettini, F. et al. Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust Theor. Appl. Genet., 111 (2005),pp. 1260-1270
    [50] Wang, D.G., Fan, J.B., Siao, C.J. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome Science, 280 (1998),pp. 1077-1082
    [51] Wang, L., Wang, A., Huang, X. et al. Mapping 49 quantitative trait loci at high resolution through sequencing-based genotyping of rice recombinant inbred lines Theor. Appl. Genet., 122 (2011),pp. 327-340
    [52] Williams, J.G.K., Kubelik, A.R., Livak, K.J. et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers Nucleic. Acids. Res., 18 (1990),pp. 6531-6535
    [53] Xiao, J., Grandillo, S., Ahn, S.N. et al. Genes from wild rice improve yield Nature, 384 (1996),pp. 223-224
    [54] Xie, W., Feng, Q., Yu, H. et al. Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10578-10583
    [55] Xing, Y., Tan, Y., Hua, J. et al. Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice Theor. Appl. Genet., 105 (2002),pp. 248-257
    [56] Xing, Y., Zhang, Q. Genetic and molecular bases of rice yield Annu. Rev. Plant Biol., 61 (2010),pp. 421-442
    [57] Xing, Y.Z., Xu, C.G., Hua, J.P. et al. Analysis of QTL × environment interaction for rice panicle characteristics Acta Genetica Sinica, 28 (2001),pp. 439-446
    [58] Xue, W., Xing, Y., Weng, X. et al. Nat. Genet., 40 (2008),pp. 761-767
    [59] Yamagata, Y., Yamamoto, E., Aya, K. et al. Mitochondrial gene in the nuclear genome induces reproductive barrier in rice Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 1494-1499
    [60] Yan, J.Q., Zhu, J., He, C.X. et al. Theor. Appl. Genet., 97 (1998),pp. 267-274
    [61] Yan, W.H., Wang, P., Chen, H.X. et al. Mol. Plant, 4 (2011),pp. 319-330
    [62] Yang, G.H., Xing, Y.Z., Li, S.Q. et al. Hereditas, 143 (2006),pp. 236-245
    [63] Yu, H., Xie, W., Wang, J. et al. Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers PLoS ONE, 6 (2011),p. e17595
    [64] Zhou, S., Wang, Y., Li, W. et al. Plant Cell, 23 (2011),pp. 111-129
    [65] Zhu, Q.H., Ramm, K., Shivakkumar, R. et al. Plant Physiol., 135 (2004),pp. 1514-1525
    [66] Zhuang, J.Y., Fan, Y.Y., Rao, Z.M. et al. Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice Theor. Appl. Genet., 105 (2002),pp. 1137-1145
    [67] Zietkiewicz, E., Rafalski, A., Labuda, D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification Genomics, 20 (1994),pp. 176-183
  • 加载中
计量
  • 文章访问数:  84
  • HTML全文浏览量:  34
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-15
  • 录用日期:  2013-06-20
  • 修回日期:  2013-05-29
  • 网络出版日期:  2013-08-20
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回