留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nodal Promotes mir206 Expression to Control Convergence and Extension Movements During Zebrafish Gastrulation

Xiuli Liu Yuanqing Ma Congwei Zhang Shi Wei Yu Cao Qiang Wang

Xiuli Liu, Yuanqing Ma, Congwei Zhang, Shi Wei, Yu Cao, Qiang Wang. Nodal Promotes mir206 Expression to Control Convergence and Extension Movements During Zebrafish Gastrulation[J]. Journal of Genetics and Genomics, 2013, 40(10): 515-521. doi: 10.1016/j.jgg.2013.07.001
Citation: Xiuli Liu, Yuanqing Ma, Congwei Zhang, Shi Wei, Yu Cao, Qiang Wang. Nodal Promotes mir206 Expression to Control Convergence and Extension Movements During Zebrafish Gastrulation[J]. Journal of Genetics and Genomics, 2013, 40(10): 515-521. doi: 10.1016/j.jgg.2013.07.001

doi: 10.1016/j.jgg.2013.07.001

Nodal Promotes mir206 Expression to Control Convergence and Extension Movements During Zebrafish Gastrulation

More Information
    • 关键词:
    •  / 
    •  / 
    •  
  • [1] Barrallo-Gimeno, A., Nieto, M.A. The snail genes as inducers of cell movement and survival: implications in development and cancer Development, 132 (2005),pp. 3151-3161
    [2] Barroso-delJesus, A., Lucena-Aguilar, G., Sanchez, L. et al. The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells FASEB J., 25 (2011),pp. 1497-1508
    [3] Bushati, N., Cohen, S.M. MicroRNA functions Annu. Rev. Cell Dev. Biol., 23 (2007),pp. 175-205
    [4] Carmany-Rampey, A., Schier, A.F. Single-cell internalization during zebrafish gastrulation Curr. Biol., 11 (2001),pp. 1261-1265
    [5] Choi, W.Y., Giraldez, A.J., Schier, A.F. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430 Science, 318 (2007),pp. 271-274
    [6] Erson, A.E., Petty, E.M. MicroRNAs in development and disease Clin. Genet., 74 (2008),pp. 296-306
    [7] Feldman, B., Gates, M.A., Egan, E.S. et al. Zebrafish organizer development and germ-layer formation require nodal-related signals Nature, 395 (1998),pp. 181-185
    [8] Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet., 9 (2008),pp. 102-114
    [9] Fuxe, J., Vincent, T., Garcia de Herreros, A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes Cell Cycle, 9 (2010),pp. 2363-2374
    [10] Gritsman, K., Zhang, J., Cheng, S. et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling Cell, 97 (1999),pp. 121-132
    [11] Hammerschmidt, M., Nusslein-Volhard, C. Development, 119 (1993),pp. 1107-1118
    [12] Hammerschmidt, M., Wedlich, D. Regulated adhesion as a driving force of gastrulation movements Development, 135 (2008),pp. 3625-3641
    [13] Jia, S., Ren, Z., Li, X. et al. smad2 and smad3 are required for mesendoderm induction by transforming growth factor-beta/nodal signals in zebrafish J. Biol. Chem., 283 (2008),pp. 2418-2426
    [14] Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [15] Kloosterman, W.P., Plasterk, R.H. The diverse functions of microRNAs in animal development and disease Dev. Cell, 11 (2006),pp. 441-450
    [16] Kloosterman, W.P., Steiner, F.A., Berezikov, E. et al. Cloning and expression of new microRNAs from zebrafish Nucleic Acids Res., 34 (2006),pp. 2558-2569
    [17] Kong, W., Yang, H., He, L. et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA Mol. Cell. Biol., 28 (2008),pp. 6773-6784
    [18] Krieg, M., Arboleda-Estudillo, Y., Puech, P.H. et al. Tensile forces govern germ-layer organization in zebrafish Nat. Cell Biol., 10 (2008),pp. 429-436
    [19] Liu, X., Ning, G., Meng, A. et al. MicroRNA-206 regulates cell movements during zebrafish gastrulation by targeting prickle1a and regulating c-Jun N-terminal kinase 2 phosphorylation Mol. Cell. Biol., 32 (2012),pp. 2934-2942
    [20] Liu, Z., Lin, X., Cai, Z. et al. Global identification of SMAD2 target genes reveals a role for multiple co-regulatory factors in zebrafish early gastrulas J. Biol. Chem., 286 (2011),pp. 28520-28532
    [21] Luxardi, G., Marchal, L., Thome, V. et al. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway Development, 137 (2010),pp. 417-426
    [22] Martello, G., Zacchigna, L., Inui, M. et al. MicroRNA control of Nodal signalling Nature, 449 (2007),pp. 183-188
    [23] Oh, H., Irvine, K.D. Cooperative regulation of growth by Yorkie and Mad through bantam Dev. Cell, 20 (2011),pp. 109-122
    [24] Sampath, K., Rubinstein, A.L., Cheng, A.M. et al. Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling Nature, 395 (1998),pp. 185-189
    [25] Schier, A.F. Nodal signaling in vertebrate development Annu. Rev. Cell Dev. Biol., 19 (2003),pp. 589-621
    [26] Schier, A.F. Nodal morphogens Cold Spring Harb Perspect Biol., 1 (2009),p. a003459
    [27] Shimizu, T., Yabe, T., Muraoka, O. et al. E-cadherin is required for gastrulation cell movements in zebrafish Mech. Dev., 122 (2005),pp. 747-763
    [28] Solnica-Krezel, L. Conserved patterns of cell movements during vertebrate gastrulation Curr. Biol., 15 (2005),pp. R213-R228
    [29] Solnica-Krezel, L., Stemple, D.L., Driever, W. Transparent things: cell fates and cell movements during early embryogenesis of zebrafish Bioessays, 17 (1995),pp. 931-939
    [30] Speirs, C.K., Jernigan, K.K., Kim, S.H. et al. Prostaglandin Gbetagamma signaling stimulates gastrulation movements by limiting cell adhesion through snai1a stabilization Development, 137 (2010),pp. 1327-1337
    [31] Takeichi, M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis Development, 102 (1988),pp. 639-655
    [32] Ulrich, F., Krieg, M., Schotz, E.M. et al. Wnt11 functions in gastrulation by controlling cell cohesion through Rab5c and E-cadherin Dev. Cell, 9 (2005),pp. 555-564
    [33] Vincent, T., Neve, E.P., Johnson, J.R. et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition Nat. Cell Biol., 11 (2009),pp. 943-950
    [34] Wang, Q., Huang, Z., Xue, H. et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4 Blood, 111 (2008),pp. 588-595
    [35] Whitman, M. Nodal signaling in early vertebrate embryos: themes and variations Dev. Cell, 1 (2001),pp. 605-617
    [36] Wienholds, E., Kloosterman, W.P., Miska, E. et al. MicroRNA expression in zebrafish embryonic development Science, 309 (2005),pp. 310-311
    [37] Zhan, X., Feng, X., Kong, Y. et al. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1 BMC Cancer, 13 (2013),p. 180
    [38] Zhang, J., Talbot, W.S., Schier, A.F. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation Cell, 92 (1998),pp. 241-251
  • 加载中
计量
  • 文章访问数:  74
  • HTML全文浏览量:  31
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-06
  • 录用日期:  2013-07-22
  • 修回日期:  2013-07-15
  • 网络出版日期:  2013-08-08
  • 刊出日期:  2013-10-20

目录

    /

    返回文章
    返回