留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology

Rongcheng Han Zhenghong Li Yanyan Fan Yuqiang Jiang

Rongcheng Han, Zhenghong Li, Yanyan Fan, Yuqiang Jiang. Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology[J]. Journal of Genetics and Genomics, 2013, 40(12): 583-595. doi: 10.1016/j.jgg.2013.11.003
Citation: Rongcheng Han, Zhenghong Li, Yanyan Fan, Yuqiang Jiang. Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology[J]. Journal of Genetics and Genomics, 2013, 40(12): 583-595. doi: 10.1016/j.jgg.2013.11.003

doi: 10.1016/j.jgg.2013.11.003

Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Abbe, E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung Archiv für Mikroskopische Anatomie, 9 (1873),pp. 413-418
    [2] Andersen, J.S., Wilkinson, C.J., Mayor, T. et al. Proteomic characterization of the human centrosome by protein correlation profiling Nature, 426 (2003),pp. 570-574
    [3] Aquino, D., Schonle, A., Geisler, C. et al. Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores Nat. Methods, 8 (2011),pp. 353-359
    [4] Baday, M., Cravens, A., Hastie, A. et al. Multicolor super-resolution DNA imaging for genetic analysis Nano Lett., 12 (2012),pp. 3861-3866
    [5] Bates, M., Blosser, T.R., Zhuang, X.W. Short-range spectroscopic ruler based on a single-molecule optical switch Phys. Rev. Lett., 94 (2005),p. 108101
    [6] Bates, M., Huang, B., Dempsey, G.T. et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes Science, 317 (2007),pp. 1749-1753
    [7] Bates, M., Huang, B., Zhuang, X.W. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes Curr. Opin. Chem. Biol., 12 (2008),pp. 505-514
    [8] Betzig, E., Patterson, G.H., Sougrat, R. et al. Imaging intracellular fluorescent proteins at nanometer resolution Science, 313 (2006),pp. 1642-1645
    [9] Biteen, J.S., Goley, E.D., Shapiro, L. et al. Chemphyschem, 13 (2012),pp. 1007-1012
    [10] Biteen, J.S., Thompson, M.A., Tselentis, N.K. et al. Nat. Methods, 5 (2008),pp. 947-949
    [11] Bohn, M., Diesinger, P., Kaufmann, R. et al. Localization microscopy reveals expression-dependent parameters of chromatin nanostructure Biophys. J., 99 (2010),pp. 1358-1367
    [12] Bopp, M.A., Jia, Y.W., Li, L.Q. et al. Fluorescence and photobleaching dynamics of single light-harvesting complexes Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 10630-10635
    [13] Bornens, M. The centrosome in cells and organisms Science, 335 (2012),pp. 422-426
    [14] Brakemann, T., Stiel, A.C., Weber, G. et al. A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching Nat. Biotechnol., 29 (2011),pp. 942-947
    [15] Buckers, J., Wildanger, D., Vicidomini, G. et al. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses Opt. Express, 19 (2011),pp. 3130-3143
    [16] Burnette, D.T., Sengupta, P., Dai, Y.H. et al. Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 21081-21086
    [17] Cattoni, D., Fiche, J., Nollmann, M. Single-molecule super-resolution imaging in bacteria Curr. Opin. Microbiol., 15 (2012),pp. 758-763
    [18] Chakalova, L., Debrand, E., Mitchell, J.A. et al. Replication and transcription: shaping the landscape of the genome Nat. Rev. Genet., 6 (2005),pp. 669-677
    [19] Chang, H., Zhang, M.S., Ji, W. et al. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 4455-4460
    [20] Chen, X., Liu, Y., Yang, X. et al.
    [21] Cho, S., Jang, J., Song, C. et al. Simple super-resolution live-cell imaging based on diffusion-assisted Forster resonance energy transfer Sci. Rep., 3 (2013),p. 1208
    [22] Chojnacki, J., Staudt, T., Glass, B. et al. Maturation-dependent HIV-1 surface protein redistribution revealed by fluorescence nanoscopy Science, 338 (2012),pp. 524-528
    [23] Coltharp, C., Xiao, J. Superresolution microscopy for microbiology Cell. Microbiol., 14 (2012),pp. 1808-1818
    [24] Cox, S., Rosten, E., Monypenny, J. et al. Bayesian localization microscopy reveals nanoscale podosome dynamics Nat. Methods, 9 (2012),pp. 195-200
    [25] Cremer, C., Kaufmann, R., Gunkel, M. et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy Biotechnol. J., 6 (2011),pp. 1037-1051
    [26] Dan, D., Lei, M., Yao, B.L. et al. DMD-based LED-illumination super-resolution and optical sectioning microscopy Sci. Rep., 3 (2013),p. 1116
    [27] Dedecker, P., Mo, G.C.H., Dertinger, T. et al. Widely accessible method for superresolution fluorescence imaging of living systems Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 10909-10914
    [28] Dempsey, G.T., Vaughan, J.C., Chen, K.H. et al. Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging Nat. Methods, 8 (2011),pp. 1027-1036
    [29] Dertinger, T., Colyer, R., Iyer, G. et al. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 22287-22292
    [30] Dertinger, T., Heilemann, M., Vogel, R. et al. Superresolution optical fluctuation imaging with organic dyes Angew. Chem. Int. Ed. Engl., 49 (2010),pp. 9441-9443
    [31] Ding, Y.C., Xi, P., Ren, Q.S. Hacking the optical diffraction limit: review on recent developments of fluorescence nanoscopy Chinese Sci. Bull., 56 (2011),pp. 1857-1876
    [32] Donnert, G., Keller, J., Wurm, C.A. et al. Two-color far-field fluorescence nanoscopy Biophys. J., 92 (2007),pp. L67-L69
    [33] Fitzpatrick, J.A.J., Yan, Q., Sieber, J.J. et al. STED nanoscopy in living cells using fluorogen activating proteins Bioconjug. Chem., 20 (2009),pp. 1843-1847
    [34] Flors, C. DNA and chromatin imaging with super-resolution fluorescence microscopy based on single-molecule localization Biopolymers, 95 (2011),pp. 290-297
    [35] Flors, C., Earnshaw, W.C. Super-resolution fluorescence microscopy as a tool to study the nanoscale organization of chromosomes Curr. Opin. Chem. Biol., 15 (2011),pp. 838-844
    [36] Folling, J., Belov, V., Kunetsky, R. et al. Photochromic rhodamines provide nanoscopy with optical sectioning Angew. Chem. Int. Ed. Engl., 46 (2007),pp. 6266-6270
    [37] Folling, J., Bossi, M., Bock, H. et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return Nat. Methods, 5 (2008),pp. 943-945
    [38] Galbraith, C.G., Galbraith, J.A. Super-resolution microscopy at a glance J. Cell Sci., 124 (2011),pp. 1607-1611
    [39] Geissbuehler, S., Dellagiacoma, C., Lasser, T. Comparison between SOFI and STORM Biomed. Opt. Express, 2 (2011),pp. 408-420
    [40] Gordon, M.P., Ha, T., Selvin, P.R. Single-molecule high-resolution imaging with photobleaching Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 6462-6465
    [41] Gould, T.J., Hess, S.T. Nanoscale biological fluorescence imaging: breaking the diffraction barrier Method. Cell Biol., 89 (2008),pp. 329-358
    [42] Grotjohann, T., Testa, I., Leutenegger, M. et al. Diffraction-unlimited all-optical imaging and writing with a photochromic GFP Nature, 478 (2011),pp. 204-208
    [43] Gur, A., Zalevsky, Z., Mico, V. et al. The limitations of nonlinear fluorescence effect in super resolution saturated structured illumination microscopy system J. Fluoresc., 21 (2011),pp. 1075-1082
    [44] Gustafsson, M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy J. Microsc., 198 (2000),pp. 82-87
    [45] Gustafsson, M.G.L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 13081-13086
    [46] Hao, X., Kuang, C., Gu, Z. et al. Super resolution microscopy of offline g-STED nanoscopy based on time-correlated single photon counting Chinese J. Lasers, 40 (2013),p. 0104001
    [47] Heilemann, M., van de Linde, S., Schuttpelz, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes Angew. Chem. Int. Ed. Engl., 47 (2008),pp. 6172-6176
    [48] Hein, B., Willig, K.I., Wurm, C.A. et al. Stimulated emission depletion nanoscopy of living cells using SNAP-tag fusion proteins Biophys. J., 98 (2010),pp. 158-163
    [49] Heintzmann, R. Saturated patterned excitation microscopy with two-dimensional excitation patterns Micron, 34 (2003),pp. 283-291
    [50] Heintzmann, R., Jovin, T.M., Cremer, C. Saturated patterned excitation microscopy ‒ a concept for optical resolution improvement J. Opt. Soc. Am. A., 19 (2002),pp. 1599-1609
    [51] Hell, S.W. Toward fluorescence nanoscopy Nat. Biotechnol., 21 (2003),pp. 1347-1355
    [52] Hell, S.W. Far-field optical nanoscopy Science, 316 (2007),pp. 1153-1158
    [53] Hell, S.W. Microscopy and its focal switch Nat. Methods, 6 (2009),pp. 24-32
    [54] Hell, S.W., Dyba, M., Jakobs, S. Concepts for nanoscale resolution in fluorescence microscopy Curr. Opin. Neurobiol., 14 (2004),pp. 599-609
    [55] Hell, S.W., Wichmann, J. Breaking the diffraction resolution limit by stimulated-emission-depletion fluorescence microscopy Opt. Lett., 19 (1994),pp. 780-782
    [56] Hess, S.T., Girirajan, T.P.K., Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy Biophys. J., 91 (2006),pp. 4258-4272
    [57] Hofmann, M., Eggeling, C., Jakobs, S. et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 17565-17569
    [58] Holden, S.J., Uphoff, S., Kapanidis, A.N. DAOSTORM: an algorithm for high-density super-resolution microscopy Nat. Methods, 8 (2011),pp. 279-280
    [59] Huang, B., Babcock, H., Zhuang, X.W. Breaking the diffraction barrier: super-resolution imaging of cells Cell, 143 (2010),pp. 1047-1058
    [60] Huang, B., Bates, M., Dempsey, G. et al. PHYS 168-sub-diffraction-limit imaging by stochastic optical reconstruction microscopy Abstr. Pap. Am. Chem. S, 234 (2007)
    [61] Huang, B., Bates, M., Zhuang, X.W. Super-resolution fluorescence microscopy Annu. Rev. Biochem., 78 (2009),pp. 993-1016
    [62] Huang, B., Wang, W.Q., Bates, M. et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy Science, 319 (2008),pp. 810-813
    [63] Huang, P.S., Zhang, S. Fast three-step phase-shifting algorithm Appl. Opt., 45 (2006),pp. 5086-5091
    [64] Jakobsen, L., Vanselow, K., Skogs, M. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods EMBO J., 30 (2011),pp. 1520-1535
    [65] Jing, J.P., Reed, J., Huang, J. et al. Automated high resolution optical mapping using arrayed, fluid-fixed DNA molecules Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8046-8051
    [66] Jones, S.A., Shim, S.H., He, J. et al. Fast, three-dimensional super-resolution imaging of live cells Nat. Methods, 8 (2011)
    [67] Juette, M.F., Gould, T.J., Lessard, M.D. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples Nat. Methods, 5 (2008),pp. 527-529
    [68] Klar, T.A., Hell, S.W. Subdiffraction resolution in far-field fluorescence microscopy Opt. Lett., 24 (1999),pp. 954-956
    [69] Klar, T.A., Jakobs, S., Dyba, M. et al. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 8206-8210
    [70] Koster, A.J., Klumperman, J. Electron microscopy in cell biology: integrating structure and function Nat. Rev. Mol. Cell Biol., 4 (2003),pp. SS6-SS10
    [71] Kuang, C., Li, S., Liu, W. et al. Breaking the diffraction barrier using fluorescence emission difference microscopy Sci. Rep., 3 (2013),p. 1441
    [72] Lakowicz, J.R. Radiative decay engineering: biophysical and biomedical applications Anal. Biochem., 298 (2001),pp. 1-24
    [73] Larson, D.R., Thompson, R., Webb, W.W. Precise nanometer localization analysis for individual fluorescent probes Biophys. J., 82 (2002),pp. 2775-2783
    [74] Lau, L., Lee, Y.L., Sahl, S.J. et al. STED microscopy with optimized labeling density reveals 9-fold arrangement of a centriole protein Biophys. J., 102 (2012),pp. 2926-2935
    [75] Lawo, S., Hasegan, M., Gupta, G.D. et al. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material Nat. Cell Biol., 14 (2012),pp. 1148-1158
    [76] Lehmann, M., Rocha, S., Mangeat, B. et al. Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction PLoS Pathog., 7 (2011),p. e1002456
    [77] Lelek, M., Di Nunzio, F., Henriques, R. et al. Superresolution imaging of HIV in infected cells with FlAsH-PALM Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 8564-8569
    [78] Leung, B.O., Chou, K.C. Review of super-resolution fluorescence microscopy for biology Appl. Spectrosc., 65 (2011),pp. 967-980
    [79] Lew, M.D., Lee, S.F., Ptacin, J.L. et al. Three-dimensional superresolution colocalization of intracellular protein superstructures and the cell surface in live Caulobacter crescentus Proc. Natl. Acad. Sci. USA, 108 (2011),pp. E1102-E1110
    [80] Lidke, K.A. Super resolution for common probes and common microscopes Nat. Methods, 9 (2012),pp. 139-141
    [81] Liu, Y.J., Ding, Y.C., Alonas, E. et al. Achieving lambda/10 resolution CW STED nanoscopy with a Ti: sapphire oscillator (2012)
    [82] Liu, Z.W., Lee, H., Xiong, Y. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects Science, 315 (2007),p. 1686
    [83] Lubeck, E., Cai, L. Single-cell systems biology by super-resolution imaging and combinatorial labeling Nat. Methods, 9 (2012),pp. 743-748
    [84] Luders, J. The amorphous pericentriolar cloud takes shape Nat. Cell Biol., 14 (2012),pp. 1126-1128
    [85] Malkusch, S., Muranyi, W., Müller, B. et al. Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution Histochem. Cell Biol., 139 (2013),pp. 173-179
    [86] Matsuda, A., Shao, L., Boulanger, J. et al. Condensed mitotic chromosome structure at nanometer resolution using PALM and EGFP-histones PLoS ONE, 5 (2010),p. e12768
    [87] McKinney, S.A., Murphy, C.S., Hazelwood, K.L. et al. A bright and photostable photoconvertible fluorescent protein Nat. Methods, 6 (2009),pp. 131-133
    [88] Mennella, V., Keszthelyi, B., McDonald, K.L. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization Nat. Cell Biol., 14 (2012),pp. 1159-1168
    [89] Meyer, L., Wildanger, D., Medda, R. et al. Dual-color STED microscopy at 30-nm focal-plane resolution Small, 4 (2008),pp. 1095-1100
    [90] Mukamel, E.A., Babcock, H., Zhuang, X.W. Statistical deconvolution for superresolution fluorescence microscopy Biophys. J., 102 (2012),pp. 2391-2400
    [91] Muller, P., Schmitt, E., Jacob, A. et al. COMBO-FISH enables high precision localization microscopy as a prerequisite for nanostructure analysis of genome loci Int. J. Mol. Sci., 11 (2010),pp. 4094-4105
    [92] Nienhaus, G.U. A fatigue-resistant photoswitchable fluorescent protein for optical nanoscopy Angew. Chem. Int. Ed. Engl., 51 (2012),pp. 1312-1314
    [93] Paintrand, M., Moudjou, M., Delacroix, H. et al. Centrosome organization and centriole architecture: their sensitivity to divalent cations J. Struct. Biol., 108 (1992),pp. 107-128
    [94] Panchenko, T., Sorensen, T.C., Woodcock, C.L. et al. Replacement of histone H3 with CENP-A directs global nucleosome array condensation and loosening of nucleosome superhelical termini Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 16588-16593
    [95] Patterson, G., Davidson, M., Manley, S. et al. Superresolution imaging using single-molecule localization Annu. Rev. Phys. Chem., 61 (2010),pp. 345-367
    [96] Patterson, G.H., Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells Science, 297 (2002),pp. 1873-1877
    [97] Pavani, S.R.P., Thompson, M.A., Biteen, J.S. et al. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 2995-2999
    [98] Pellett, P.A., Sun, X.L., Gould, T.J. et al. Two-color STED microscopy in living cells Biomed. Opt. Express, 2 (2011),pp. 2364-2371
    [99] Pereira, C.F., Rossy, J., Owen, D.M. et al. HIV taken by STORM: super-resolution fluorescence microscopy of a viral infection Virol. J., 9 (2012),p. 84
    [100] Pohl, D.W., Denk, W., Lanz, M. Optical stethoscopy: image recording with resolution lambda/20 Appl. Phys. Lett., 44 (1984),pp. 651-653
    [101] Ptacin, J.L., Lee, S.F., Garner, E.C. et al. A spindle-like apparatus guides bacterial chromosome segregation Nat. Cell Biol., 12 (2010),pp. 791-798
    [102] Punge, A., Rizzoli, S.O., Jahn, R. et al. 3D reconstruction of high-resolution STED microscope images Microsc. Res. Tech., 71 (2008),pp. 644-650
    [103] Qu, X.H., Wu, D., Mets, L. et al. Nanometer-localized multiple single-molecule fluorescence microscopy Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11298-11303
    [104] Quan, T.W., Zhu, H.Y., Liu, X.M. et al. High-density localization of active molecules using structured sparse model and Bayesian information criterion Opt. Express, 19 (2011),pp. 16963-16974
    [105] Rego, E.H., Shao, L., Macklin, J.J. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E135-E143
    [106] Reymann, J., Baddeley, D., Gunkel, M. et al. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy Chromosome Res., 16 (2008),pp. 367-382
    [107] Ribeiro, S.A., Vagnarelli, P., Dong, Y.M. et al. A super-resolution map of the vertebrate kinetochore Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 10484-10489
    [108] Rittweger, E., Rankin, B.R., Westphal, V. et al. Fluorescence depletion mechanisms in super-resolving STED microscopy Chem. Phys. Lett., 442 (2007),pp. 483-487
    [109] Rust, M.J., Bates, M., Zhuang, X.W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) Nat. Methods, 3 (2006),pp. 793-795
    [110] Sauer, M. Reversible molecular photoswitches: A key technology for nanoscience and fluorescence imaging Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 9433-9434
    [111] Schermelleh, L., Carlton, P.M., Haase, S. et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy Science, 320 (2008),pp. 1332-1336
    [112] Schermelleh, L., Heintzmann, R., Leonhardt, H. A guide to super-resolution fluorescence microscopy J. Cell Biol., 190 (2010),pp. 165-175
    [113] Schmid, S.L. The mechanism of receptor-mediated endocytosis: more questions than answers Bioessays, 14 (1992),pp. 589-596
    [114] Schmid, S.L. Clathrin-coated vesicle formation and protein sorting: an integrated process Annu. Rev. Biochem., 66 (1997),pp. 511-548
    [115] Schmidt, R., Wurm, C.A., Punge, A. et al. Mitochondrial cristae revealed with focused light Nano Lett., 9 (2009),pp. 2508-2510
    [116] Shaner, N.C., Lin, M.Z., McKeown, M.R. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins Nat. Methods, 5 (2008),pp. 545-551
    [117] Shroff, H., Galbraith, C.G., Galbraith, J.A. et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics Nat. Methods, 5 (2008),pp. 417-423
    [118] Shtengel, G., Galbraith, J.A., Galbraith, C.G. et al. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 3125-3130
    [119] Sigrist, S.J., Sabatini, B.L. Optical super-resolution microscopy in neurobiology Curr. Opin. Neurobiol., 22 (2012),pp. 86-93
    [120] Smolyaninov, I.I., Hung, Y.J., Davis, C.C. Magnifying superlens in the visible frequency range Science, 315 (2007),pp. 1699-1701
    [121] Tonnesen, J., Nadrigny, F., Willig, K.I. et al. Two-color STED microscopy of living synapses using a single laser-beam pair Biophys. J., 101 (2011),pp. 2545-2552
    [122] Tonnesen, J., Nagerl, U.V. Superresolution imaging for neuroscience Exp. Neurol., 242 (2013),pp. 33-40
    [123] van de Linde, S., Heilemann, M., Sauer, M. Live-cell super-resolution imaging with synthetic fluorophores Annu. Rev. Phys. Chem., 63 (2012),pp. 519-540
    [124] Vaughan, J.C., Zhuang, X. New fluorescent probes for super-resolution imaging Nat. Biotechnol., 29 (2011),pp. 880-881
    [125] Vorobjev, I.A., Chentsov, Y.S. The ultrastructure of centriole in mammalian tissue-culture cells Cell Biol. Int. Rep., 4 (1980),pp. 1037-1044
    [126] Wang, W.Q., Li, G.W., Chen, C.Y. et al. Chromosome organization by a nucleoid-associated protein in live bacteria Science, 333 (2011),pp. 1445-1449
    [127] Wang, Y., Quan, T.W., Zeng, S.Q. et al. PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy Opt. Express, 20 (2012),pp. 16039-16049
    [128] Westphal, V., Rizzoli, S.O., Lauterbach, M.A. et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement Science, 320 (2008),pp. 246-249
    [129] Wiedenmann, J., Ivanchenko, S., Oswald, F. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 15905-15910
    [130] Willig, K.I., Rizzoli, S.O., Westphal, V. et al. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis Nature, 440 (2006),pp. 935-939
    [131] Willig, K.I., Stiel, A.C., Brakemann, T. et al. Dual-label STED nanoscopy of living cells using photochromism Nano Lett., 11 (2011),pp. 3970-3973
    [132] Wombacher, R., Cornish, V.W. Chemical tags: applications in live cell fluorescence imaging J. Biophotonics, 4 (2011),pp. 391-402
    [133] Wombacher, R., Heidbreder, M., van de Linde, S. et al. Live-cell super-resolution imaging with trimethoprim conjugates Nat. Methods, 7 (2010),pp. 717-719
    [134] Wu, M., Huang, B., Graham, M. et al. Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system Nat. Cell Biol., 12 (2010),pp. 902-908
    [135] Xiao, M., Gordon, M.P., Phong, A. et al. Determination of haplotypes from single DNA molecules: a method for single-molecule barcoding Hum. Mutat., 28 (2007),pp. 913-921
    [136] Xiao, M., Phong, A., Ha, C. et al. Rapid DNA mapping by fluorescent single molecule detection Nucleic Acids Res., 35 (2007),p. e16
    [137] Xiao, M., Wan, E., Chu, C. et al. Direct determination of haplotypes from single DNA molecules Nat. Methods, 6 (2009),pp. 199-201
    [138] Zessin, P.J.M., Finan, K., Heilemann, M. Super-resolution fluorescence imaging of chromosomal DNA J. Struct. Biol., 177 (2012),pp. 344-348
    [139] Zhang, M.S., Chang, H., Zhang, Y.D. et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins Nat. Methods, 9 (2012),pp. 727-729
    [140] Zhu, L., Zhang, W., Elnatan, D. et al. Faster STORM using compressed sensing Nat. Methods, 9 (2012),pp. 721-723
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-10
  • 录用日期:  2013-11-11
  • 修回日期:  2013-11-11
  • 网络出版日期:  2013-11-23
  • 刊出日期:  2013-12-20

目录

    /

    返回文章
    返回