留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CRISPR/Cas9 and Genome Editing in Drosophila

Andrew R. Bassett Ji-Long Liu

Andrew R. Bassett, Ji-Long Liu. CRISPR/Cas9 and Genome Editing in Drosophila[J]. Journal of Genetics and Genomics, 2014, 41(1): 7-19. doi: 10.1016/j.jgg.2013.12.004
Citation: Andrew R. Bassett, Ji-Long Liu. CRISPR/Cas9 and Genome Editing in Drosophila[J]. Journal of Genetics and Genomics, 2014, 41(1): 7-19. doi: 10.1016/j.jgg.2013.12.004

doi: 10.1016/j.jgg.2013.12.004

CRISPR/Cas9 and Genome Editing in Drosophila

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Barrangou, R., Fremaux, C., Deveau, H. et al. CRISPR provides acquired resistance against viruses in prokaryotes Science, 315 (2007),pp. 1709-1712
    [2] Baena-Lopez, L.A., Alexandre, C., Mitchell, A. et al. Development, 140 (2013),pp. 4818-4825
    [3] Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Cell Rep., 4 (2013),pp. 220-228
    [4] Bassett, A.R., Tibbit, C., Ponting, C.P. et al. Biol. Open, 3 (2014),pp. 42-49
    [5] Bellen, H.J., Levis, R.W., He, Y. et al. Genetics, 188 (2011),pp. 731-743
    [6] Bellen, H.J., Levis, R.W., Liao, G. et al. Genetics, 167 (2004),pp. 761-781
    [7] Bernstein, B.E., Birney, E., Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [8] Beumer, K., Bhattacharyya, G., Bibikova, M. et al. Genetics, 172 (2006),pp. 2391-2403
    [9] Beumer, K.J., Trautman, J.K., Bozas, A. et al. Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 19821-19826
    [10] Beumer, K.J., Trautman, J.K., Mukherjee, K. et al. Donor DNA utilization during gene targeting with zinc-finger nucleases G3 (Bethesda), 3 (2013),pp. 657-664
    [11] Bibikova, M., Beumer, K., Trautman, J.K. et al. Enhancing gene targeting with designed zinc finger nucleases Science, 300 (2003),p. 764
    [12] Bibikova, M., Golic, M., Golic, K.G. et al. Genetics, 161 (2002),pp. 1169-1175
    [13] Biswas, A., Gagnon, J.N., Brouns, S.J. et al. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets RNA Biol., 10 (2013),pp. 817-827
    [14] Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [15] Bonas, U., Stall, R.E., Staskawicz, B. Mol. Gen. Genet., 218 (1989),pp. 127-136
    [16] Brockdorff, N. Noncoding RNA and polycomb recruitment RNA, 19 (2013),pp. 429-442
    [17] Brouns, S.J., Jore, M.M., Lundgren, M. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes Science, 321 (2008),pp. 960-964
    [18] Bulyk, M.L., Johnson, P.L., Church, G.M. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors Nucleic Acids Res., 30 (2002),pp. 1255-1261
    [19] Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [20] Cheng, A.W., Wang, H., Yang, H. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system Cell Res., 23 (2013),pp. 1163-1171
    [21] Choo, Y., Klug, A. Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 11168-11172
    [22] Choo, Y., Klug, A. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage Proc. Natl. Acad. Sci. USA, 91 (1994),pp. 11163-11167
    [23] Choulika, A., Perrin, A., Dujon, B. et al. Mol. Cell. Biol., 15 (1995),pp. 1968-1973
    [24] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [25] Dahlem, T.J., Hoshijima, K., Jurynec, M.J. et al. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome PLoS Genet., 8 (2012),p. e1002861
    [26] Davidovich, C., Zheng, L., Goodrich, K.J. et al. Promiscuous RNA binding by polycomb repressive complex 2 Nat. Struct. Mol. Biol., 20 (2013),pp. 1250-1257
    [27] Del Rio, S., Menezes, S.R., Setzer, D.R. The function of individual zinc fingers in sequence-specific DNA recognition by transcription factor IIIA J. Mol. Biol., 233 (1993),pp. 567-579
    [28] DiCarlo, J.E., Norville, J.E., Mali, P. et al. Nucleic Acids Res., 41 (2013),pp. 4336-4343
    [29] Dickinson, D.J., Ward, J.D., Reiner, D.J. et al. Nat. Methods, 10 (2013),pp. 1028-1034
    [30] Esvelt, K.M., Mali, P., Braff, J.L. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing Nat. Methods, 10 (2013),pp. 1116-1121
    [31] Farzadfard, F., Perli, S.D., Lu, T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas ACS Synth. Biol., 2 (2013),pp. 604-613
    [32] Flockhart, I., Booker, M., Kiger, A. et al. Nucleic Acids Res., 34 (2006),pp. D489-D494
    [33] Flockhart, I.T., Booker, M., Hu, Y. et al. Nucleic Acids Res., 40 (2012),pp. D715-D719
    [34] Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [35] Garneau, J.E., Dupuis, M.E., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [36] Gasiunas, G., Barrangou, R., Horvath, P. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E2579-E2586
    [37] Gilbert, L.A., Larson, M.H., Morsut, L. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes Cell, 154 (2013),pp. 442-451
    [38] Gloor, G.B., Nassif, N.A., Johnson-Schlitz, D.M. et al. Science, 253 (1991),pp. 1110-1117
    [39] Golic, K.G., Lindquist, S. Cell, 59 (1989),pp. 499-509
    [40] Gratz, S.J., Cummings, A.M., Nguyen, J.N. et al. Genetics, 194 (2013),pp. 1029-1035
    [41] Grissa, I., Vergnaud, G., Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats BMC Bioinformatics, 8 (2007),p. 172
    [42] Grissa, I., Vergnaud, G., Pourcel, C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats Nucleic Acids Res., 35 (2007),pp. W52-W57
    [43] Grissa, I., Vergnaud, G., Pourcel, C. CRISPRcompar: a website to compare clustered regularly interspaced short palindromic repeats Nucleic Acids Res., 36 (2008),pp. W145-W148
    [44] Groth, A.C., Fish, M., Nusse, R. et al. Genetics, 166 (2004),pp. 1775-1782
    [45] Gupta, A., Hall, V.L., Kok, F.O. et al. Targeted chromosomal deletions and inversions in zebrafish Genome Res., 23 (2013),pp. 1008-1017
    [46] Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol, 31 (2013),pp. 827-832
    [47] Huang, J., Zhou, W., Watson, A.M. et al. Genetics, 180 (2008),pp. 703-707
    [48] Hwang, W.Y., Fu, Y., Reyon, D. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 227-229
    [49] Ishino, Y., Shinagawa, H., Makino, K. et al. J. Bacteriol., 169 (1987),pp. 5429-5433
    [50] Jansen, R., Embden, J.D., Gaastra, W. et al. Identification of genes that are associated with DNA repeats in prokaryotes Mol. Microbiol., 43 (2002),pp. 1565-1575
    [51] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [52] Jinek, M., East, A., Cheng, A. et al. RNA-programmed genome editing in human cells Elife, 2 (2013),p. e00471
    [53] Khalil, A.M., Guttman, M., Huarte, M. et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 11667-11672
    [54] Kondo, S., Ueda, R. Genetics, 195 (2013),pp. 715-721
    [55] Lange, S.J., Alkhnbashi, O.S., Rose, D. et al. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems Nucleic Acids Res., 41 (2013),pp. 8034-8044
    [56] Lee, H.Y., Haurwitz, R.E., Apffel, A. et al. RNA-protein analysis using a conditional CRISPR nuclease Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 5416-5421
    [57] Li, T., Huang, S., Zhao, X. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes Nucleic Acids Res., 39 (2011),pp. 6315-6325
    [58] Lin, M.F., Carlson, J.W., Crosby, M.A. et al. Genome Res., 17 (2007),pp. 1823-1836
    [59] Liu, J., Li, C., Yu, Z. et al. J. Genet. Genomics, 39 (2012),pp. 209-215
    [60] Mali, P., Aach, J., Stranges, P.B. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering Nat. Biotechnol., 31 (2013),pp. 833-838
    [61] Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [62] McCarthy, M.I., Abecasis, G.R., Cardon, L.R. et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges Nat. Rev. Genet., 9 (2008),pp. 356-369
    [63] Meader, S., Ponting, C.P., Lunter, G. Massive turnover of functional sequence in human and other mammalian genomes Genome Res., 20 (2010),pp. 1335-1343
    [64] Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. et al. Short motif sequences determine the targets of the prokaryotic CRISPR defence system Microbiology, 155 (2009),pp. 733-740
    [65] Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [66] Park, P.J. ChIP-seq: advantages and challenges of a maturing technology Nat. Rev. Genet., 10 (2009),pp. 669-680
    [67] Perez-Pinera, P., Kocak, D.D., Vockley, C.M. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors Nat. Methods, 10 (2013),pp. 973-976
    [68] Qi, L.S., Larson, M.H., Gilbert, L.A. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression Cell, 152 (2013),pp. 1173-1183
    [69] Ran, F.A., Hsu, P.D., Lin, C.Y. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity Cell, 154 (2013),pp. 1380-1389
    [70] Ren, X., Sun, J., Housden, B.E. et al. Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 19012-19017
    [71] Reyon, D., Tsai, S.Q., Khayter, C. et al. FLASH assembly of TALENs for high-throughput genome editing Nat. Biotechnol., 30 (2012),pp. 460-465
    [72] Rong, Y.S., Golic, K.G. Science, 288 (2000),pp. 2013-2018
    [73] Rousseau, C., Gonnet, M., Le Romancer, M. et al. CRISPI: a CRISPR interactive database Bioinformatics, 25 (2009),pp. 3317-3318
    [74] Roy, S., Ernst, J., Kharchenko, P.V. et al. Science, 330 (2010),pp. 1787-1797
    [75] Sander, J.D., Maeder, M.L., Reyon, D. et al. ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool Nucleic Acids Res., 38 (2010),pp. W462-W468
    [76] Sander, J.D., Zaback, P., Joung, J.K. et al. Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool Nucleic Acids Res., 35 (2007),pp. W599-W605
    [77] Sanjana, N.E., Cong, L., Zhou, Y. et al. A transcription activator-like effector toolbox for genome engineering Nat. Protoc., 7 (2012),pp. 171-192
    [78] Sebo, Z.L., Lee, H.B., Peng, Y. et al. Fly (Austin), 8 (2013)
    [79] Shalem, O., Sanjana, N.E., Hartenian, E. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells Science, 343 (2014),pp. 84-87
    [80] Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [81] Skennerton, C.T., Imelfort, M., Tyson, G.W. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data Nucleic Acids Res., 41 (2013),p. e105
    [82] Smih, F., Rouet, P., Romanienko, P.J. et al. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells Nucleic Acids Res., 23 (1995),pp. 5012-5019
    [83] Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [84] Wang, T., Wei, J.J., Sabatini, D.M. et al. Genetic screens in human cells using the CRISPR-Cas9 system Science, 343 (2014),pp. 80-84
    [85] Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9 - rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
    [86] Xiao, A., Wang, Z., Hu, Y. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish Nucleic Acids Res., 41 (2013),p. e141
    [87] Yu, Z., Ren, M., Wang, Z. et al. Genetics, 195 (2013),pp. 289-291
    [88] Zhao, J., Ohsumi, T.K., Kung, J.T. et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq Mol. Cell, 40 (2010),pp. 939-953
  • 加载中
计量
  • 文章访问数:  115
  • HTML全文浏览量:  33
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-25
  • 录用日期:  2013-12-11
  • 修回日期:  2013-12-10
  • 网络出版日期:  2013-12-18
  • 刊出日期:  2014-01-20

目录

    /

    返回文章
    返回