留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion

Jolene S.Y. Tan Colin J.P. Seow Vera J. Goh David L. Silver

Jolene S.Y. Tan, Colin J.P. Seow, Vera J. Goh, David L. Silver. Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion[J]. Journal of Genetics and Genomics, 2014, 41(5): 251-259. doi: 10.1016/j.jgg.2014.03.003
Citation: Jolene S.Y. Tan, Colin J.P. Seow, Vera J. Goh, David L. Silver. Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion[J]. Journal of Genetics and Genomics, 2014, 41(5): 251-259. doi: 10.1016/j.jgg.2014.03.003

doi: 10.1016/j.jgg.2014.03.003

Recent Advances in Understanding Proteins Involved in Lipid Droplet Formation, Growth and Fusion

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Arisawa, K., Ichi, I., Yasukawa, Y. et al. Changes in the phospholipid fatty acid composition of the lipid droplet during the differentiation of 3T3-L1 adipocytes J. Biochem., 154 (2013),pp. 281-289
    [2] Bartz, R., Li, W.H., Venables, B. et al. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic J. Lipid Res., 48 (2007),pp. 837-847
    [3] Bartz, R., Zehmer, J.K., Zhu, M. et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation J. Proteome Res., 6 (2007),pp. 3256-3265
    [4] Beck, R., Ravet, M., Wieland, F.T. et al. The COPI system: molecular mechanisms and function FEBS Lett., 583 (2009),pp. 2701-2709
    [5] Beller, M., Riedel, D., Jansch, L. et al. Mol. Cell. Proteomics, 5 (2006),pp. 1082-1094
    [6] Beller, M., Sztalryd, C., Southall, N. et al. COPI complex is a regulator of lipid homeostasis PLoS Biol., 6 (2008),p. e292
    [7] Bouchoux, J., Beilstein, F., Pauquai, T. et al. The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics Biol. Cell, 103 (2011),pp. 499-517
    [8] Brasaemle, D.L., Dolios, G., Shapiro, L. et al. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes J. Biol. Chem., 279 (2004),pp. 46835-46842
    [9] Brasaemle, D.L., Subramanian, V., Garcia, A. et al. Perilipin A and the control of triacylglycerol metabolism Mol. Cell. Biochem., 326 (2009),pp. 15-21
    [10] Brasaemle, D.L., Wolins, N.E. Packaging of fat: an evolving model of lipid droplet assembly and expansion J. Biol. Chem., 287 (2012),pp. 2273-2279
    [11] Buhman, K.K., Chen, H.C., The enzymes of neutral lipid synthesis J. Biol. Chem., 276 (2001),pp. 40369-40372
    [12] Chen, W., Chang, B., Saha, P. et al. Berardinelli-seip congenital lipodystrophy 2/seipin is a cell-autonomous regulator of lipolysis essential for adipocyte differentiation Mol. Cell. Biol., 32 (2012),pp. 1099-1111
    [13] Cui, X., Wang, Y., Meng, L. et al. Overexpression of a short human seipin/BSCL2 isoform in mouse adipose tissue results in mild lipodystrophy Am. J. Physiol.-Endoc. M., 302 (2012),pp. E705-E713
    [14] Cui, X., Wang, Y., Tang, Y. et al. Seipin ablation in mice results in severe generalized lipodystrophy Hum. Mol. Genet., 20 (2011),pp. 3022-3030
    [15] Ding, Y., Yang, L., Zhang, S. et al. Identification of the major functional proteins of prokaryotic lipid droplets J. Lipid. Res., 53 (2012),pp. 399-411
    [16] Egan, J.J., Greenberg, A.S., Chang, M.K. et al. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 8537-8541
    [17] Fei, W., Shui, G., Gaeta, B. et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast J. Cell Biol., 180 (2008),pp. 473-482
    [18] Fei, W., Shui, G., Zhang, Y. et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets PLoS Genet., 7 (2011),p. e1002201
    [19] Gibellini, F., Smith, T.K. IUBMB Life, 62 (2010),pp. 414-428
    [20] Gong, J., Sun, Z., Wu, L. et al. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites J. Cell Biol., 195 (2011),pp. 953-963
    [21] Goodman, J.M. Demonstrated and inferred metabolism associated with cytosolic lipid droplets J. Lipid Res., 50 (2009),pp. 2148-2156
    [22] Gross, D.A., Zhan, C., Silver, D.L. Direct binding of triglyceride to fat storage-inducing transmembrane proteins 1 and 2 is important for lipid droplet formation Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 19581-19586
    [23] Guo, Y., Walther, T.C., Rao, M. et al. Functional genomic screen reveals genes involved in lipid-droplet formation and utilization Nature, 453 (2008),pp. 657-661
    [24] Haemmerle, G., Lass, A., Zimmermann, R. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase Science, 312 (2006),pp. 734-737
    [25] Harris, C.A., Haas, J.T., Streeper, R.S. et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes J. Lipid Res., 52 (2011),pp. 657-667
    [26] Hu, J., Shibata, Y., Zhu, P.P. et al. A class of dynamin-like GTPases involved in the generation of the tubular ER network Cell, 138 (2009),pp. 549-561
    [27] Imamura, M., Inoguchi, T., Ikuyama, S. et al. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts Am. J. Physiol.-Endoc. M., 283 (2002),pp. E775-E783
    [28] Ivanova, P.T., Milne, S.B., Myers, D.S. et al. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids Curr. Opin. Chem. Biol., 13 (2009),pp. 526-531
    [29] Ivashov, V.A., Grillitsch, K., Koefeler, H. et al. Biochim. Biophys. Acta, 1831 (2013),pp. 282-290
    [30] Jacquier, N., Mishra, S., Choudhary, V. et al. Expression of oleosin and perilipins in yeast promote formation of lipid droplets from the endoplasmatic reticulum J. Cell Sci., 126 (2013),pp. 5198-5209
    [31] Kadereit, B., Kumar, P., Wang, W.J. et al. Evolutionarily conserved gene family important for fat storage Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 94-99
    [32] Keller, P., Petrie, J.T., De Rose, P. et al. Fat-specific protein 27 regulates storage of triacylglycerol J. Biol. Chem., 283 (2008),pp. 14355-14365
    [33] Klemm, R.W., Norton, J.P., Cole, R.A. et al. A conserved role for atlastin GTPases in regulating lipid droplet size Cell Rep., 3 (2013),pp. 1465-1475
    [34] Koh, Y.K., Lee, M.Y., Kim, J.W. et al. Lipin 1 is a key factor for the maturation and maintenance of adipocytes in the regulatory network with CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2 J. Biol. Chem., 283 (2008),pp. 34896-34906
    [35] Krahmer, N., Guo, Y., Wilfling, F. et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase Cell Metab., 14 (2011),pp. 504-515
    [36] Krahmer, N., Hilger, M., Kory, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence Mol. Cell. Proteomics, 12 (2013),pp. 1115-1126
    [37] Kuerschner, L., Moessinger, C., Thiele, C. Imaging of lipid biosynthesis: how a neutral lipid enters lipid droplets Traffic, 9 (2008),pp. 338-352
    [38] Lee, M.C., Miller, E.A., Goldberg, J. et al. Bi-directional protein transport between the ER and Golgi Annu. Rev. Cell Dev. Biol., 20 (2004),pp. 87-123
    [39] Li, F., Gu, Y., Dong, W. et al. Cell death-inducing DFF45-like effector, a lipid droplet-associated protein, might be involved in the differentiation of human adipocytes FEBS J., 277 (2010),pp. 4173-4183
    [40] Lu, X., Gruia-Gray, J., Copeland, N.G. et al. The murine perilipin gene: the lipid droplet-associated perilipins derive from tissue-specific, mRNA splice variants and define a gene family of ancient origin Mamm. Genome, 12 (2001),pp. 741-749
    [41] Matsusue, K., Kusakabe, T., Noguchi, T. et al. Hepatic steatosis in leptin-deficient mice is promoted by the PPARgamma target gene Fsp27 Cell Metab., 7 (2008),pp. 302-311
    [42] McFie, P.J., Banman, S.L., Kary, S. et al. Murine diacylglycerol acyltransferase-2 (DGAT2) can catalyze triacylglycerol synthesis and promote lipid droplet formation independent of its localization to the endoplasmic reticulum J. Biol. Chem., 286 (2011),pp. 28235-28246
    [43] Miranda, D.A., Koves, T.R., Gross, D.A. et al. Re-patterning of skeletal muscle energy metabolism by fat storage-inducing transmembrane protein 2 J. Biol. Chem., 286 (2011),pp. 42188-42199
    [44] Murphy, D. The dynamic roles of intracellular lipid droplets: from archaea to mammals Protoplasma, 249 (2012),pp. 541-585
    [45] Murphy, D.J., Vance, J. Mechanisms of lipid-body formation Trends Biochem. Sci., 24 (1999),pp. 109-115
    [46] Nakamura, N., Banno, Y., Tamiya-Koizumi, K. Arf1-dependent PLD1 is localized to oleic acid-induced lipid droplets in NIH3T3 cells Biochem. Biophy. Res. Commun., 335 (2005),pp. 117-123
    [47] Nishino, N., Tamori, Y., Tateya, S. et al. FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets J. Clin. Invest., 118 (2008),pp. 2808-2821
    [48] Novikoff, A.B., Novikoff, P.M., Rosen, O.M. et al. Organelle relationships in cultured 3T3-L1 preadipocytes J. Cell Biol., 87 (1980),pp. 180-196
    [49] Payne, V.A., Grimsey, N., Tuthill, A. et al. The human lipodystrophy gene BSCL2/seipin may be essential for normal adipocyte differentiation Diabetes, 57 (2008),pp. 2055-2060
    [50] Perktold, A., Zechmann, B., Daum, G. et al. Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell FEMS Yeast Res., 7 (2007),pp. 629-638
    [51] Phan, J., Peterfy, M., Reue, K. J. Biol. Chem., 279 (2004),pp. 29558-29564
    [52] Puri, V., Konda, S., Ranjit, S. et al. Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage J. Biol. Chem., 282 (2007),pp. 34213-34218
    [53] Rismanchi, N., Soderblom, C., Stadler, J. et al. Atlastin GTPases are required for Golgi apparatus and ER morphogenesis Hum. Mol. Genet., 17 (2008),pp. 1591-1604
    [54] Rubio-Cabezas, O., Puri, V., Murano, I. et al. Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC EMBO Mol. Med., 1 (2009),pp. 280-287
    [55] Schoenborn, V., Heid, I.M., Vollmert, C. et al. The ATGL gene is associated with free fatty acids, triglycerides, and type 2 diabetes Diabetes, 55 (2006),pp. 1270-1275
    [56] Schoiswohl, G., Schweiger, M., Schreiber, R. et al. Adipose triglyceride lipase plays a key role in the supply of the working muscle with fatty acids J. Lipid Res., 51 (2010),pp. 490-499
    [57] Shi, X., Li, J., Zou, X. et al. Regulation of lipid droplet size and phospholipid composition by stearoyl-CoA desaturase J. Lipid Res., 54 (2013),pp. 2504-2514
    [58] Sim, M.F., Dennis, R.J., Aubry, E.M. et al. The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1 Mol. Metab., 2 (2012),pp. 38-46
    [59] Skinner, J.R., Shew, T.M., Schwartz, D.M. et al. Diacylglycerol enrichment of endoplasmic reticulum or lipid droplets recruits perilipin 3/TIP47 during lipid storage and mobilization J. Biol. Chem., 284 (2009),pp. 30941-30948
    [60] Spandl, J., Lohmann, D., Kuerschner, L. et al. J. Biol. Chem., 286 (2011),pp. 5599-5606
    [61] Spanova, M., Czabany, T., Zellnig, G. et al. J. Biol. Chem., 285 (2010),pp. 6127-6133
    [62] Sun, Z., Gong, J., Wu, H. et al. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes Nat. Commun., 4 (2013),p. 1594
    [63] Szymanski, K.M., Binns, D., Bartz, R. et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 20890-20895
    [64] Takashima, K., Saitoh, A., Hirose, S. et al. GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER transport involved in regulation of lipid homeostasis Cell Struct. Func., 36 (2011),pp. 223-235
    [65] Tauchi-Sato, K., Ozeki, S., Houjou, T. et al. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition J. Biol. Chem., 277 (2002),pp. 44507-44512
    [66] Thiam, A.R., Antonny, B., Wang, J. et al. COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 13244-13249
    [67] Tian, Y., Bi, J., Shui, G. et al. PLoS Genet., 7 (2011),p. e1001364
    [68] Walker, A.K., Jacobs, R.L., Watts, J.L. et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans Cell, 147 (2011),pp. 840-852
    [69] Walther, T.C., The life of lipid droplets Biochim. Biophys. Acta, 1791 (2009),pp. 459-466
    [70] Wilfling, F., Wang, H., Haas, J.T. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets Dev. Cell, 24 (2013),pp. 384-399
    [71] Wolins, N.E., Quaynor, B.K., Skinner, J.R. et al. S3-12, Adipophilin, and TIP47 package lipid in adipocytes J. Biol. Chem., 280 (2005),pp. 19146-19155
    [72] Wolins, N.E., Rubin, B., Brasaemle, D.L. TIP47 associates with lipid droplets J. Biol. Chem., 276 (2001),pp. 5101-5108
    [73] Xu, G., Sztalryd, C., Lu, X. et al. Post-translational regulation of adipose differentiation-related protein by the ubiquitin/proteasome pathway J. Biol. Chem., 280 (2005),pp. 42841-42847
    [74] Xu, N., Zhang, S.O., Cole, R.A. et al. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface J. Cell Biol., 198 (2012),pp. 895-911
    [75] Yang, L., Ding, Y., Chen, Y. et al. The proteomics of lipid droplets: structure, dynamics, and functions of the organelle conserved from bacteria to humans J. Lipid Res., 53 (2012),pp. 1245-1253
    [76] Yang, W., Thein, S., Guo, X. et al. Seipin differentially regulates lipogenesis and adipogenesis through a conserved core sequence and an evolutionarily acquired C-terminus Biochem. J., 452 (2013),pp. 37-44
    [77] Yang, W., Thein, S., Wang, X. et al. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling Hum. Mol. Genet, 23 (2014),pp. 502-513
    [78] Yu, W., Bozza, P.T., Tzizik, D.M. et al. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies Am. J. Pathol., 152 (1998),pp. 759-769
    [79] Yu, W., Cassara, J., Weller, P.F. Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells Blood, 95 (2000),pp. 1078-1085
    [80] Zehmer, J.K., Huang, Y., Peng, G. et al. A role for lipid droplets in inter-membrane lipid traffic Proteomics, 9 (2009),pp. 914-921
    [81] Zimmermann, R., Strauss, J.G., Haemmerle, G. et al. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase Science, 306 (2004),pp. 1383-1386
  • 加载中
计量
  • 文章访问数:  120
  • HTML全文浏览量:  27
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-25
  • 录用日期:  2014-03-05
  • 修回日期:  2014-03-03
  • 网络出版日期:  2014-03-19
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回