留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics

Joshua J. Gooley Eric Chern-Pin Chua

Joshua J. Gooley, Eric Chern-Pin Chua. Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics[J]. Journal of Genetics and Genomics, 2014, 41(5): 231-250. doi: 10.1016/j.jgg.2014.04.001
Citation: Joshua J. Gooley, Eric Chern-Pin Chua. Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics[J]. Journal of Genetics and Genomics, 2014, 41(5): 231-250. doi: 10.1016/j.jgg.2014.04.001

doi: 10.1016/j.jgg.2014.04.001

Diurnal Regulation of Lipid Metabolism and Applications of Circadian Lipidomics

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Akashi, M., Takumi, T. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1 Nat. Struct. Mol. Biol., 12 (2005),pp. 441-448
    [2] Albrecht, U., Sun, Z.S., Eichele, G. et al. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light Cell, 91 (1997),pp. 1055-1064
    [3] Ando, H., Yanagihara, H., Hayashi, Y. et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue Endocrinology, 146 (2005),pp. 5631-5636
    [4] Andrews, J.L., Zhang, X., McCarthy, J.J. et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 19090-19095
    [5] Ang, J.E., Revell, V., Mann, A. et al. Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach Chronobiol. Int., 29 (2012),pp. 868-881
    [6] Arble, D.M., Bass, J., Laposky, A.D. et al. Circadian timing of food intake contributes to weight gain Obesity (Silver Spring), 17 (2009),pp. 2100-2102
    [7] Asher, G., Gatfield, D., Stratmann, M. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell, 134 (2008),pp. 317-328
    [8] Balsalobre, A., Brown, S.A., Marcacci, L. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling Science, 289 (2000),pp. 2344-2347
    [9] Berson, D.M., Dunn, F.A., Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock Science, 295 (2002),pp. 1070-1073
    [10] Brown, D.L., Feskanich, D., Sanchez, B.N. et al. Rotating night shift work and the risk of ischemic stroke Am. J. Epidemiol., 169 (2009),pp. 1370-1377
    [11] Bugge, A., Feng, D., Everett, L.J. et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function Genes Dev., 26 (2012),pp. 657-667
    [12] Bunger, M.K., Walisser, J.A., Sullivan, R. et al. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus Genesis, 41 (2005),pp. 122-132
    [13] Bunger, M.K., Wilsbacher, L.D., Moran, S.M. et al. Mop3 is an essential component of the master circadian pacemaker in mammals Cell, 103 (2000),pp. 1009-1017
    [14] Buxton, O.M., Cain, S.W., O'Connor, S.P. et al. Adverse metabolic consequences in humans of prolonged sleep restriction combined with circadian disruption Sci. Transl. Med., 4 (2012),p. 129ra43
    [15] Caton, P.W., Kieswich, J., Yaqoob, M.M. et al. Diabetes Obes. Metab., 13 (2011),pp. 1097-1104
    [16] Cho, H., Zhao, X., Hatori, M. et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta Nature, 485 (2012),pp. 123-127
    [17] Chou, T.C., Scammell, T.E., Gooley, J.J. et al. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms J. Neurosci., 23 (2003),pp. 10691-10702
    [18] Chua, E.C., Shui, G., Lee, I.T. et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic phenotypes in humans Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 14468-14473
    [19] Coomans, C.P., van den Berg, S.A., Lucassen, E.A. et al. The suprachiasmatic nucleus controls circadian energy metabolism and hepatic insulin sensitivity Diabetes, 62 (2013),pp. 1102-1108
    [20] Crumbley, C., Wang, Y., Kojetin, D.J. et al. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene J. Biol. Chem., 285 (2010),pp. 35386-35392
    [21] Czeisler, C.A., Gooley, J.J. Sleep and circadian rhythms in humans Cold Spring Harb. Symp. Quant. Biol., 72 (2007),pp. 579-597
    [22] Czeisler, C.A., Johnson, M.P., Duffy, J.F. et al. Exposure to bright light and darkness to treat physiologic maladaptation to night work N. Engl. J. Med., 322 (1990),pp. 1253-1259
    [23] Czeisler, C.A., Klerman, E.B. Circadian and sleep-dependent regulation of hormone release in humans Recent Prog. Horm. Res., 54 (1999),pp. 97-130
    [24] Dallmann, R., Viola, A.U., Tarokh, L. et al. The human circadian metabolome Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 2625-2629
    [25] Damiola, F., Le Minh, N., Preitner, N. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus Genes Dev., 14 (2000),pp. 2950-2961
    [26] De Bacquer, D., Van Risseghem, M., Clays, E. et al. Rotating shift work and the metabolic syndrome: a prospective study Int. J. Epidemiol., 38 (2009),pp. 848-854
    [27] DeCoursey, P.J., Walker, J.K., Smith, S.A. A circadian pacemaker in free-living chipmunks: essential for survival? J. Comp. Physiol. A, 186 (2000),pp. 169-180
    [28] Douris, N., Kojima, S., Pan, X. et al. Nocturnin regulates circadian trafficking of dietary lipid in intestinal enterocytes Curr. Biol., 21 (2011),pp. 1347-1355
    [29] Draisma, H.H., Reijmers, T.H., Bobeldijk-Pastorova, I. et al. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs OMICS, 12 (2008),pp. 17-31
    [30] Draisma, H.H., Reijmers, T.H., Meulman, J.J. et al. Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families Eur. J. Hum. Genet., 21 (2013),pp. 95-101
    [31] Dudley, C.A., Erbel-Sieler, C., Estill, S.J. et al. Science, 301 (2003),pp. 379-383
    [32] Eckel-Mahan, K.L., Patel, V.R., Mohney, R.P. et al. Coordination of the transcriptome and metabolome by the circadian clock Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 5541-5546
    [33] Eide, E.J., Woolf, M.F., Kang, H. et al. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation Mol. Cell Biol., 25 (2005),pp. 2795-2807
    [34] Esquirol, Y., Bongard, V., Mabile, L. et al. Shift work and metabolic syndrome: respective impacts of job strain, physical activity, and dietary rhythms Chronobiol. Int., 26 (2009),pp. 544-559
    [35] Feng, D., Liu, T., Sun, Z. et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism Science, 331 (2011),pp. 1315-1319
    [36] Finck, B.N., Gropler, M.C., Chen, Z. et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway Cell Metab., 4 (2006),pp. 199-210
    [37] Fontaine, C., Dubois, G., Duguay, Y. et al. The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation J. Biol. Chem., 278 (2003),pp. 37672-37680
    [38] Fukuhara, C., Tosini, G. Peripheral circadian oscillators and their rhythmic regulation Front. Biosci., 8 (2003),pp. d642-d651
    [39] Gekakis, N., Staknis, D., Nguyen, H.B. et al. Role of the CLOCK protein in the mammalian circadian mechanism Science, 280 (1998),pp. 1564-1569
    [40] Gerhart-Hines, Z., Feng, D., Emmett, M.J. et al. The nuclear receptor Rev-erbalpha controls circadian thermogenic plasticity Nature, 503 (2013),pp. 410-413
    [41] Gervois, P., Chopin-Delannoy, S., Fadel, A. et al. Mol. Endocrinol., 13 (1999),pp. 400-409
    [42] Gieger, C., Geistlinger, L., Altmaier, E. et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum PLoS Genet., 4 (2008),p. e1000282
    [43] Godinho, S.I., Maywood, E.S., Shaw, L. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period Science, 316 (2007),pp. 897-900
    [44] Golombek, D.A., Rosenstein, R.E. Physiology of circadian entrainment Physiol. Rev., 90 (2010),pp. 1063-1102
    [45] Gomez-Abellan, P., Hernandez-Morante, J.J., Lujan, J.A. et al. Clock genes are implicated in the human metabolic syndrome Int. J. Obes. (Lond), 32 (2008),pp. 121-128
    [46] Gooley, J.J. Treatment of circadian rhythm sleep disorders with light Ann. Acad. Med. Singapore, 37 (2008),pp. 669-676
    [47] Gooley, J.J., Lu, J., Chou, T.C. et al. Melanopsin in cells of origin of the retinohypothalamic tract Nat. Neurosci., 4 (2001),p. 1165
    [48] Gooley, J.J., Schomer, A., Saper, C.B. The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms Nat. Neurosci., 9 (2006),pp. 398-407
    [49] Green, R.M., Tingay, S., Wang, Z.Y. et al. Plant Physiol., 129 (2002),pp. 576-584
    [50] , Staknis, D., Weitz, C.J. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock Science, 286 (1999),pp. 768-771
    [51] Grimaldi, B., Bellet, M.M., Katada, S. et al. PER2 controls lipid metabolism by direct regulation of PPARgamma Cell Metab., 12 (2010),pp. 509-520
    [52] Hampton, S.M., Morgan, L.M., Lawrence, N. et al. Postprandial hormone and metabolic responses in simulated shift work J. Endocrinol., 151 (1996),pp. 259-267
    [53] Hannibal, J. Roles of PACAP-containing retinal ganglion cells in circadian timing Int. Rev. Cytol., 251 (2006),pp. 1-39
    [54] Hannibal, J., Hindersson, P., Knudsen, S.M. et al. The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract J. Neurosci., 22 (2002),p. RC191
    [55] Hatanaka, F., Matsubara, C., Myung, J. et al. Genome-wide profiling of the core clock protein BMAL1 targets reveals a strict relationship with metabolism Mol. Cell Biol., 30 (2010),pp. 5636-5648
    [56] Hatori, M., Vollmers, C., Zarrinpar, A. et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet Cell Metab., 15 (2012),pp. 848-860
    [57] Hattar, S., Liao, H.W., Takao, M. et al. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity Science, 295 (2002),pp. 1065-1070
    [58] He, W., Barak, Y., Hevener, A. et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 15712-15717
    [59] Horton, J.D., Goldstein, J.L., Brown, M.S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver J. Clin. Invest., 109 (2002),pp. 1125-1131
    [60] Hughes, M.E., DiTacchio, L., Hayes, K.R. et al. Harmonics of circadian gene transcription in mammals PLoS Genet., 5 (2009),p. e1000442
    [61] Hussain, M.M., Pan, X. Clock regulation of dietary lipid absorption Curr. Opin. Clin. Nutr. Metab. Care, 15 (2012),pp. 336-341
    [62] Hussain, M.M., Rava, P., Walsh, M. et al. Multiple functions of microsomal triglyceride transfer protein Nutr. Metab. (Lond), 9 (2012),p. 14
    [63] Jagannath, A., Butler, R., Godinho, S.I. et al. The CRTC1-SIK1 pathway regulates entrainment of the circadian clock Cell, 154 (2013),pp. 1100-1111
    [64] Janszky, I., Ljung, R. Shifts to and from daylight saving time and incidence of myocardial infarction N. Engl. J. Med., 359 (2008),pp. 1966-1968
    [65] Kamei, Y., Ohizumi, H., Fujitani, Y. et al. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 12378-12383
    [66] Karlsson, B., Alfredsson, L., Knutsson, A. et al. Total mortality and cause-specific mortality of Swedish shift- and dayworkers in the pulp and paper industry in 1952-2001 Scand. J. Work Environ. Health, 31 (2005),pp. 30-35
    [67] Kasukawa, T., Sugimoto, M., Hida, A. et al. Human blood metabolite timetable indicates internal body time Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15036-15041
    [68] Kawachi, I., Colditz, G.A., Stampfer, M.J. et al. Prospective study of shift work and risk of coronary heart disease in women Circulation, 92 (1995),pp. 3178-3182
    [69] Kohsaka, A., Laposky, A.D., Ramsey, K.M. et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice Cell Metab., 6 (2007),pp. 414-421
    [70] Koike, N., Yoo, S.H., Huang, H.C. et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals Science, 338 (2012),pp. 349-354
    [71] Krauss, R.M., Zhu, H., Kaddurah-Daouk, R. Pharmacometabolomics of statin response Clin. Pharmacol. Ther., 94 (2013),pp. 562-565
    [72] Kume, K., Zylka, M.J., Sriram, S. et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop Cell, 98 (1999),pp. 193-205
    [73] Lam, T.K., Schwartz, G.J., Rossetti, L. Hypothalamic sensing of fatty acids Nat. Neurosci., 8 (2005),pp. 579-584
    [74] Lamia, K.A., Papp, S.J., Yu, R.T. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature, 480 (2011),pp. 552-556
    [75] Lamia, K.A., Sachdeva, U.M., DiTacchio, L. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science, 326 (2009),pp. 437-440
    [76] Lamia, K.A., Storch, K.F., Weitz, C.J. Physiological significance of a peripheral tissue circadian clock Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 15172-15177
    [77] Lau, P., Fitzsimmons, R.L., Raichur, S. et al. The orphan nuclear receptor, RORalpha, regulates gene expression that controls lipid metabolism: staggerer (SG/SG) mice are resistant to diet-induced obesity J. Biol. Chem., 283 (2008),pp. 18411-18421
    [78] Le Martelot, G., Claudel, T., Gatfield, D. et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis PLoS Biol., 7 (2009),p. e1000181
    [79] Le Minh, N., Damiola, F., Tronche, F. et al. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators EMBO J., 20 (2001),pp. 7128-7136
    [80] Lee, C., Etchegaray, J.P., Cagampang, F.R. et al. Posttranslational mechanisms regulate the mammalian circadian clock Cell, 107 (2001),pp. 855-867
    [81] Lehmann, J.M., Moore, L.B., Smith-Oliver, T.A. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma) J. Biol. Chem., 270 (1995),pp. 12953-12956
    [82] Lehrke, M., Lazar, M.A. The many faces of PPARgamma Cell, 123 (2005),pp. 993-999
    [83] Levi, F., Schibler, U. Circadian rhythms: mechanisms and therapeutic implications Annu. Rev. Pharmacol. Toxicol., 47 (2007),pp. 593-628
    [84] Li, M.D., Li, C.M., Wang, Z. The role of circadian clocks in metabolic disease Yale J. Biol. Med., 85 (2012),pp. 387-401
    [85] Li, X., Zhang, S., Blander, G. et al. SIRT1 deacetylates and positively regulates the nuclear receptor LXR Mol. Cell, 28 (2007),pp. 91-106
    [86] Liu, C., Li, S., Liu, T. et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism Nature, 447 (2007),pp. 477-481
    [87] Liu, S., Brown, J.D., Stanya, K.J. et al. A diurnal serum lipid integrates hepatic lipogenesis and peripheral fatty acid use Nature, 502 (2013),pp. 550-554
    [88] Liu, S., Hatano, B., Zhao, M. et al. Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation J. Biol. Chem., 286 (2011),pp. 1237-1247
    [89] Lowrey, P.L., Takahashi, J.S. Genetics of circadian rhythms in Mammalian model organisms Adv. Genet., 74 (2011),pp. 175-230
    [90] Lu, J., Zhang, Y.H., Chou, T.C. et al. Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation J. Neurosci., 21 (2001),pp. 4864-4874
    [91] Lund, T.M., Torsvik, H., Falch, D. et al. Effect of morning versus evening intake of simvastatin on the serum cholesterol level in patients with coronary artery disease Am. J. Cardiol., 90 (2002),pp. 784-786
    [92] MacLellan, J.D., Gerrits, M.F., Gowing, A. et al. Physiological increases in uncoupling protein 3 augment fatty acid oxidation and decrease reactive oxygen species production without uncoupling respiration in muscle cells Diabetes, 54 (2005),pp. 2343-2350
    [93] Mamontova, A., Seguret-Mace, S., Esposito, B. et al. Severe atherosclerosis and hypoalphalipoproteinemia in the staggerer mouse, a mutant of the nuclear receptor RORalpha Circulation, 98 (1998),pp. 2738-2743
    [94] Marcheva, B., Ramsey, K.M., Buhr, E.D. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature, 466 (2010),pp. 627-631
    [95] McCarthy, J.J., Andrews, J.L., McDearmon, E.L. et al. Identification of the circadian transcriptome in adult mouse skeletal muscle Physiol. Genomics, 31 (2007),pp. 86-95
    [96] Meijer, J.H., Schwartz, W.J. In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus J. Biol. Rhythms, 18 (2003),pp. 235-249
    [97] Minami, Y., Kasukawa, T., Kakazu, Y. et al. Measurement of internal body time by blood metabolomics Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 9890-9895
    [98] Moller-Levet, C.S., Archer, S.N., Bucca, G. et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E1132-E1141
    [99] Monk, T.H., Buysse, D.J. Exposure to shift work as a risk factor for diabetes J. Biol. Rhythms, 28 (2013),pp. 356-359
    [100] Moore, R.Y., Eichler, V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat Brain Res., 42 (1972),pp. 201-206
    [101] Morgan, L., Arendt, J., Owens, D. et al. Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism J. Endocrinol., 157 (1998),pp. 443-451
    [102] Morselli, L., Leproult, R., Balbo, M. et al. Role of sleep duration in the regulation of glucose metabolism and appetite Best Pract. Res. Clin. Endocrinol. Metab., 24 (2010),pp. 687-702
    [103] Motosugi, Y., Ando, H., Ushijima, K. et al. Tissue-dependent alterations of the clock gene expression rhythms in leptin-resistant Zucker diabetic fatty rats Chronobiol. Int., 28 (2011),pp. 968-972
    [104] Murakami, D.M., Horwitz, B.A., Fuller, C.A. Circadian rhythms of temperature and activity in obese and lean Zucker rats Am. J. Physiol., 269 (1995),pp. R1038-R1043
    [105] Nakahata, Y., Kaluzova, M., Grimaldi, B. et al. Cell, 134 (2008),pp. 329-340
    [106] O'Neil, D., Mendez-Figueroa, H., Mistretta, T.A. et al. Dysregulation of Npas2 leads to altered metabolic pathways in a murine knockout model Mol. Genet. Metab., 110 (2013),pp. 378-387
    [107] Otway, D.T., Mantele, S., Bretschneider, S. et al. Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic Diabetes, 60 (2011),pp. 1577-1581
    [108] Ouyang, Y., Andersson, C.R., Kondo, T. et al. Resonating circadian clocks enhance fitness in cyanobacteria Proc. Natl. Acad. Sci. USA, 95 (1998),pp. 8660-8664
    [109] Pan, A., Schernhammer, E.S., Sun, Q. et al. Rotating night shift work and risk of type 2 diabetes: two prospective cohort studies in women PLoS Med., 8 (2011),p. e1001141
    [110] Pan, X., Hussain, M.M. Clock is important for food and circadian regulation of macronutrient absorption in mice J. Lipid Res., 50 (2009),pp. 1800-1813
    [111] Pan, X., Zhang, Y., Wang, L. et al. Diurnal regulation of MTP and plasma triglyceride by CLOCK is mediated by SHP Cell Metab., 12 (2010),pp. 174-186
    [112] Panda, S., Antoch, M.P., Miller, B.H. et al. Coordinated transcription of key pathways in the mouse by the circadian clock Cell, 109 (2002),pp. 307-320
    [113] Paschos, G.K., Ibrahim, S., Song, W.L. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl Nat. Med., 18 (2012),pp. 1768-1777
    [114] Portaluppi, F., Lemmer, B. Chronobiology and chronotherapy of ischemic heart disease Adv. Drug Deliv. Rev., 59 (2007),pp. 952-965
    [115] Preitner, N., Damiola, F., Lopez-Molina, L. et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator Cell, 110 (2002),pp. 251-260
    [116] Quehenberger, O., Armando, A.M., Brown, A.H. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma J. Lipid Res., 51 (2010),pp. 3299-3305
    [117] Reick, M., Garcia, J.A., Dudley, C. et al. NPAS2: an analog of clock operative in the mammalian forebrain Science, 293 (2001),pp. 506-509
    [118] Rey, G., Cesbron, F., Rougemont, J. et al. Genome-wide and phase-specific DNA-binding rhythms of BMAL1 control circadian output functions in mouse liver PLoS Biol., 9 (2011),p. e1000595
    [119] Ribeiro, D.C., Hampton, S.M., Morgan, L. et al. Altered postprandial hormone and metabolic responses in a simulated shift work environment J. Endocrinol., 158 (1998),pp. 305-310
    [120] Rudic, R.D., McNamara, P., Curtis, A.M. et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis PLoS Biol., 2 (2004),p. e377
    [121] Sadacca, L.A., Lamia, K.A., deLemos, A.S. et al. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice Diabetologia, 54 (2011),pp. 120-124
    [122] Sahar, S., Sassone-Corsi, P. Regulation of metabolism: the circadian clock dictates the time Trends Endocrinol. Metab., 23 (2012),pp. 1-8
    [123] Saito, Y., Yoshida, S., Nakaya, N. et al. Comparison between morning and evening doses of simvastatin in hyperlipidemic subjects. A double-blind comparative study Arterioscler. Thromb, 11 (1991),pp. 816-826
    [124] Saper, C.B., Lu, J., Chou, T.C. et al. The hypothalamic integrator for circadian rhythms Trends Neurosci., 28 (2005),pp. 152-157
    [125] Sato, T.K., Panda, S., Miraglia, L.J. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock Neuron, 43 (2004),pp. 527-537
    [126] Sato, T.K., Yamada, R.G., Ukai, H. et al. Feedback repression is required for mammalian circadian clock function Nat. Genet., 38 (2006),pp. 312-319
    [127] Scheer, F.A., Czeisler, C.A. Melatonin, sleep, and circadian rhythms Sleep Med. Rev., 9 (2005),pp. 5-9
    [128] Scheer, F.A., Hilton, M.F., Mantzoros, C.S. et al. Adverse metabolic and cardiovascular consequences of circadian misalignment Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 4453-4458
    [129] Schwartz, W.J., Tavakoli-Nezhad, M., Lambert, C.M. et al. Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 17219-17224
    [130] Schwer, B., Verdin, E. Conserved metabolic regulatory functions of sirtuins Cell Metab., 7 (2008),pp. 104-112
    [131] Shea, S.A., Hilton, M.F., Orlova, C. et al. Independent circadian and sleep/wake regulation of adipokines and glucose in humans J. Clin. Endocrinol. Metab., 90 (2005),pp. 2537-2544
    [132] Shimba, S., Ishii, N., Ohta, Y. et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 12071-12076
    [133] Shimba, S., Ogawa, T., Hitosugi, S. et al. PLoS ONE, 6 (2011),p. e25231
    [134] Shirogane, T., Jin, J., Ang, X.L. et al. J. Biol. Chem., 280 (2005),pp. 26863-26872
    [135] Shostak, A., Meyer-Kovac, J., Oster, H. Circadian regulation of lipid mobilization in white adipose tissues Diabetes, 62 (2013),pp. 2195-2203
    [136] Siepka, S.M., Yoo, S.H., Park, J. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression Cell, 129 (2007),pp. 1011-1023
    [137] So, A.Y., Bernal, T.U., Pillsbury, M.L. et al. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 17582-17587
    [138] Solanes, G., Pedraza, N., Iglesias, R. et al. Functional relationship between MyoD and peroxisome proliferator-activated receptor-dependent regulatory pathways in the control of the human uncoupling protein-3 gene transcription Mol. Endocrinol., 17 (2003),pp. 1944-1958
    [139] Solt, L.A., Wang, Y., Banerjee, S. et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists Nature, 485 (2012),pp. 62-68
    [140] Sookoian, S., Gemma, C., Fernandez, G.T. et al. Effects of rotating shift work on biomarkers of metabolic syndrome and inflammation J. Intern. Med., 261 (2007),pp. 285-292
    [141] Spiegel, K., Knutson, K., Leproult, R. et al. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes J. Appl. Physiol. (1985), 99 (2005),pp. 2008-2019
    [142] Stubblefield, J.J., Terrien, J., Green, C.B. Nocturnin: at the crossroads of clocks and metabolism Trends Endocrinol. Metab., 23 (2012),pp. 326-333
    [143] Takasu, N.N., Pendergast, J.S., Olivas, C.S. et al. PLoS ONE, 8 (2013),p. e64333
    [144] Takeda, Y., Kang, H.S., Angers, M. et al. Nucleic Acids Res., 39 (2011),pp. 4769-4782
    [145] Turek, F.W., Joshu, C., Kohsaka, A. et al. Obesity and metabolic syndrome in circadian Clock mutant mice Science, 308 (2005),pp. 1043-1045
    [146] Ueda, H.R., Chen, W., Adachi, A. et al. A transcription factor response element for gene expression during circadian night Nature, 418 (2002),pp. 534-539
    [147] Ueda, H.R., Chen, W., Minami, Y. et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-wide expression profiles Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 11227-11232
    [148] Um, J.H., Yang, S., Yamazaki, S. et al. Activation of 5'-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2 J. Biol. Chem., 282 (2007),pp. 20794-20798
    [149] van der Spek, R., Kreier, F., Fliers, E. et al. Circadian rhythms in white adipose tissue Prog. Brain Res., 199 (2012),pp. 183-201
    [150] Wallace, A., Chinn, D., Rubin, G. Taking simvastatin in the morning compared with in the evening: randomised controlled trial BMJ, 327 (2003),p. 788
    [151] Wenk, M.R. Lipidomics: new tools and applications Cell, 143 (2010),pp. 888-895
    [152] , Bogan, R.K., Wyatt, J.K. Shift work and the assessment and management of shift work disorder (SWD) Sleep Med. Rev., 17 (2013),pp. 41-54
    [153] Wu, X., Wiater, M.F., Ritter, S. NPAS2 deletion impairs responses to restricted feeding but not to metabolic challenges Physiol. Behav., 99 (2010),pp. 466-471
    [154] Yamazaki, S., Kerbeshian, M.C., Hocker, C.G. et al. J. Neurosci., 18 (1998),pp. 10709-10723
    [155] Yamazaki, S., Numano, R., Abe, M. et al. Resetting central and peripheral circadian oscillators in transgenic rats Science, 288 (2000),pp. 682-685
    [156] Yan, J., Wang, H., Liu, Y. et al. Analysis of gene regulatory networks in the mammalian circadian rhythm PLoS Comput. Biol., 4 (2008),p. e1000193
    [157] Yang, X., Downes, M., Yu, R.T. et al. Nuclear receptor expression links the circadian clock to metabolism Cell, 126 (2006),pp. 801-810
    [158] Yoo, S.H., Mohawk, J.A., Siepka, S.M. et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm Cell, 152 (2013),pp. 1091-1105
    [159] Yoo, S.H., Yamazaki, S., Lowrey, P.L. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 5339-5346
    [160] Zheng, B., Albrecht, U., Kaasik, K. et al. Cell, 105 (2001),pp. 683-694
    [161] Zhu, L.L., Zhou, Q., Yan, X.F. et al. Optimal time to take once-daily oral medications in clinical practice Int. J. Clin. Pract., 62 (2008),pp. 1560-1571
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  38
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-02
  • 录用日期:  2014-04-10
  • 修回日期:  2014-04-10
  • 网络出版日期:  2014-04-21
  • 刊出日期:  2014-05-20

目录

    /

    返回文章
    返回