留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Lifespan Modulation in Mice and the Confounding Effects of Genetic Background

Lorna Mulvey Amy Sinclair Colin Selman

Lorna Mulvey, Amy Sinclair, Colin Selman. Lifespan Modulation in Mice and the Confounding Effects of Genetic Background[J]. Journal of Genetics and Genomics, 2014, 41(9): 497-503. doi: 10.1016/j.jgg.2014.06.002
Citation: Lorna Mulvey, Amy Sinclair, Colin Selman. Lifespan Modulation in Mice and the Confounding Effects of Genetic Background[J]. Journal of Genetics and Genomics, 2014, 41(9): 497-503. doi: 10.1016/j.jgg.2014.06.002

doi: 10.1016/j.jgg.2014.06.002

Lifespan Modulation in Mice and the Confounding Effects of Genetic Background

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Anisimov, V.N., Berstein, L.M., Egormin, P.A. et al. Exp. Gerontol., 40 (2005),pp. 685-693
    [2] Anisimov, V.N., Berstein, L.M., Egormin, P.A. et al. Metformin slows down aging and extends life span of female SHR mice Cell Cycle, 7 (2008),pp. 2769-2773
    [3] Anisimov, V.N., Berstein, L.M., Popovich, I.G. et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice Aging (Albany NY), 3 (2011),pp. 148-157
    [4] Anisimov, V.N., Piskunova, T.S., Popovich, I.G. et al. Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice Aging (Albany NY), 2 (2010),pp. 945-958
    [5] Anisimov, V.N., Zabezhinski, M.A., Popovich, I.G. et al. Rapamycin extends maximal lifespan in cancer-prone mice Am. J. Pathol., 176 (2010),pp. 2092-2097
    [6] Anisimov, V.N., Zabezhinski, M.A., Popovich, I.G. et al. Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice Cell Cycle, 10 (2011),pp. 4230-4236
    [7] Austad, S.N. Cats, “rats,” and bats: the comparative biology of aging in the 21st century Integr. Comp. Biol., 50 (2010),pp. 783-792
    [8] Austad, S.N. Methusaleh's Zoo: how nature provides us with clues for extending human health span J. Comp. Pathol., 142 (2010),pp. S10-S21
    [9] Balcombe, N.R., Sinclair, A. Ageing: definitions, mechanisms and the magnitude of the problem Best Pract. Res. Clin. Gastroenterol., 15 (2001),pp. 835-849
    [10] Bartke, A. Single-gene mutations and healthy ageing in mammals Philos. Trans. R. Soc. Lond. B Biol. Sci., 366 (2011),pp. 28-34
    [11] Bartke, A., Sun, L.Y., Longo, V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity Physiol. Rev., 93 (2013),pp. 571-598
    [12] Bartke, A., Wright, J.C., Mattison, J.A. et al. Extending the lifespan of long-lived mice Nature, 414 (2001),p. 412
    [13] Berglund, E.D., Li, C.Y., Poffenberger, G. et al. Diabetes, 57 (2008),pp. 1790-1799
    [14] Bhattacharya, A., Bokov, A., Muller, F.L. et al. Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS Neurobiol. Aging, 33 (2012),pp. 1829-1832
    [15] Bjedov, I., Partridge, L. A longer and healthier life with TOR down-regulation: genetics and drugs Biochem. Soc. Trans., 39 (2011),pp. 460-465
    [16] Bjedov, I., Toivonen, J.M., Kerr, F. et al. Cell Metab., 11 (2010),pp. 35-46
    [17] Bluher, M., Kahn, B.B., Kahn, C.R. Extended longevity in mice lacking the insulin receptor in adipose tissue Science, 299 (2003),pp. 572-574
    [18] Bokov, A.F., Garg, N., Ikeno, Y. et al. PLoS ONE, 6 (2011),p. e26891
    [19] Broughton, S., Partridge, L. Insulin/IGF-like signalling, the central nervous system and aging Biochem. J., 418 (2009),pp. 1-12
    [20] Brown-Borg, H.M., Borg, K.E., Meliska, C.J. et al. Dwarf mice and the ageing process Nature, 384 (1996),p. 33
    [21] Carey, J.R., Liedo, P., Harshman, L. et al. Life history response of Mediterranean fruit flies to dietary restriction Aging Cell, 1 (2002),pp. 140-148
    [22] Colman, R.J., Anderson, R.M., Johnson, S.C. et al. Caloric restriction delays disease onset and mortality in rhesus monkeys Science, 325 (2009),pp. 201-204
    [23] Colman, R.J., Beasley, T.M., Kemnitz, J.W. et al. Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys Nat. Commun., 5 (2014),p. 3557
    [24] Coschigano, K.T., Holland, A.N., Riders, M.E. et al. Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span Endocrinology, 144 (2003),pp. 3799-3810
    [25] Deelen, J., Uh, H.W., Monajemi, R. et al. Gene set analysis of GWAS data for human longevity highlights the relevance of the insulin/IGF-1 signaling and telomere maintenance pathways Age (Dordr), 35 (2013),pp. 235-249
    [26] Duan, W., Mattson, M.P. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease J. Neurosci. Res., 57 (1999),pp. 195-206
    [27] Fang, Y., Westbrook, R., Hill, C. et al. Duration of rapamycin treatment has differential effects on metabolism in mice Cell Metab., 17 (2013),pp. 456-462
    [28] Fernandes, G., Yunis, E.J., Good, R.A. Influence of diet on survival of mice Proc. Natl. Acad. Sci. USA, 73 (1976),pp. 1279-1283
    [29] Flurkey, K., Papaconstantinou, J., Harrison, D.E. Mech. Ageing Dev., 123 (2002),pp. 121-130
    [30] Flurkey, K., Papaconstantinou, J., Miller, R.A. et al. Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 6736-6741
    [31] Fok, W.C., Bokov, A., Gelfond, J. et al. Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver Aging Cell, 13 (2014),pp. 311-319
    [32] Fontana, L., Villareal, D.T., Weiss, E.P. et al. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial Am. J. Physiol. Endocrinol. Metab., 293 (2007),pp. E197-E202
    [33] Forster, M.J., Morris, P., Sohal, R.S. Genotype and age influence the effect of caloric intake on mortality in mice FASEB J., 17 (2003),pp. 690-692
    [34] Funkat, A., Massa, C.M., Jovanovska, V. et al. Metabolic adaptations of three inbred strains of mice (C57BL/6, DBA/2, and 129T2) in response to a high-fat diet J. Nutr., 134 (2004),pp. 3264-3269
    [35] Garcia, A.M., Busuttil, R.A., Calder, R.B. et al. Effect of Ames dwarfism and caloric restriction on spontaneous DNA mutation frequency in different mouse tissues Mech. Ageing Dev., 129 (2008),pp. 528-533
    [36] Gems, D., Partridge, L. Genetics of longevity in model organisms: debates and paradigm shifts Annu. Rev. Physiol., 75 (2013),pp. 621-644
    [37] Goren, H.J., Kulkarni, R.N., Kahn, C.R. Glucose homeostasis and tissue transcript content of insulin signaling intermediates in four inbred strains of mice: C57BL/6, C57BLKS/6, DBA/2, and 129X1 Endocrinology, 145 (2004),pp. 3307-3323
    [38] Halagappa, V.K., Guo, Z., Pearson, M. et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimers disease Neurobiol. Dis., 26 (2007),pp. 212-220
    [39] Harrison, D.E., Archer, J.R. Genetic differences in effects of food restriction on aging in mice J. Nutr., 117 (1987),pp. 376-382
    [40] Harrison, D.E., Strong, R., Sharp, Z.D. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice Nature, 460 (2009),pp. 392-395
    [41] Hempenstall, S., Picchio, L., Mitchell, S.E. et al. The impact of acute caloric restriction on the metabolic phenotype in male C57BL/6 and DBA/2 mice Mech. Ageing Dev., 131 (2010),pp. 111-118
    [42] Holzenberger, M., Dupont, J., Ducos, B. et al. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice Nature, 421 (2003),pp. 182-187
    [43] Ikeno, Y., Bronson, R.T., Hubbard, G.B. et al. Delayed occurrence of fatal neoplastic diseases in Ames dwarf mice: correlation to extended longevity J. Gerontol. A Biol. Sci. Med. Sci., 58 (2003),pp. 291-296
    [44] Kanda, T., Saegusa, S., Takahashi, T. et al. Reduced-energy diet improves survival of obese KKAy mice with viral myocarditis: induction of cardiac adiponectin expression Int. J. Cardiol., 119 (2007),pp. 310-318
    [45] Kapahi, P., Chen, D., Rogers, A.N. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging Cell Metab., 11 (2010),pp. 453-465
    [46] Kapahi, P., Zid, B.M., Harper, T. et al. Curr. Biol., 14 (2004),pp. 885-890
    [47] Kenyon, C. The plasticity of aging: insights from long-lived mutants Cell, 120 (2005),pp. 449-460
    [48] Kenyon, C.J. The genetics of ageing Nature, 464 (2010),pp. 504-512
    [49] Kinney, B.A., Meliska, C.J., Steger, R.W. et al. Evidence that Ames dwarf mice age differently from their normal siblings in behavioral and learning and memory parameters Horm. Behav., 39 (2001),pp. 277-284
    [50] Kirk, K.L. Dietary restriction and aging: comparative tests of evolutionary hypotheses J. Gerontol. A Biol. Sci. Med. Sci., 56 (2001),pp. B123-B129
    [51] Kirkwood, T.B. Understanding the odd science of aging Cell, 120 (2005),pp. 437-447
    [52] Kirkwood, T.B. Understanding ageing from an evolutionary perspective J. Intern. Med., 263 (2008),pp. 117-127
    [53] Kirkwood, T.B., Holliday, R. The evolution of ageing and longevity Proc. R. Soc. Lond. B Biol. Sci., 205 (1979),pp. 531-546
    [54] Lamming, D.W., Sabatini, D.M. A radical role for TOR in longevity Cell Metab., 13 (2011),pp. 617-618
    [55] Lamming, D.W., Ye, L., Astle, C.M. et al. Young and old genetically heterogeneous HET3 mice on a rapamycin diet are glucose intolerant but insulin sensitive Aging Cell, 12 (2013),pp. 712-718
    [56] Lamming, D.W., Ye, L., Katajisto, P. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity Science, 335 (2012),pp. 1638-1643
    [57] Lamming, D.W., Ye, L., Sabatini, D.M. et al. Rapalogs and mTOR inhibitors as anti-aging therapeutics J. Clin. Invest., 123 (2013),pp. 980-989
    [58] Lanza-Jacoby, S., Yan, G., Radice, G. et al. Calorie restriction delays the progression of lesions to pancreatic cancer in the LSL-KrasG12D; Pdx-1/Cre mouse model of pancreatic cancer Exp. Biol. Med. (Maywood), 238 (2013),pp. 787-797
    [59] Liang, H., Masoro, E.J., Nelson, J.F. et al. Genetic mouse models of extended lifespan Exp. Gerontol., 38 (2003),pp. 1353-1364
    [60] Liao, C.Y., Rikke, B.A., Johnson, T.E. et al. Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening Aging Cell, 9 (2010),pp. 92-95
    [61] Mair, W., Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction Annu. Rev. Biochem., 77 (2008),pp. 727-754
    [62] Masoro, E.J. Dietary Restriction Exp. Gerontol., 30 (1995),pp. 291-298
    [63] Masternak, M.M., Al-Regaiey, K., Bonkowski, M.S. et al. Divergent effects of caloric restriction on gene expression in normal and long-lived mice J. Gerontol. A Biol. Sci. Med. Sci., 59 (2004),pp. 784-788
    [64] Mattison, J.A., Roth, G.S., Beasley, T.M. et al. Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study Nature, 489 (2012),pp. 318-321
    [65] McCay, C.M., Crowell, M.F., Maynard, L.A. The effect of retarded growth upon the length of life span and upon the ultimate body size J. Nutr., 10 (1935),pp. 63-79
    [66] McKiernan, S.H., Bua, E., McGorray, J. et al. Early-onset calorie restriction conserves fiber number in aging rat skeletal muscle FASEB J., 18 (2004),pp. 580-581
    [67] Miller, R.A., Harrison, D.E., Astle, C.M. et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice J. Gerontol. A Biol. Sci. Med. Sci., 66 (2011),pp. 191-201
    [68] Miller, R.A., Harrison, D.E., Astle, C.M. et al. Rapamycin-mediated lifespan increase in mice is dose and sex dependent and metabolically distinct from dietary restriction Aging Cell, 13 (2014),pp. 468-477
    [69] Munch, D., Amdam, G.V., Wolschin, F. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee Funct. Ecol., 22 (2008),pp. 407-421
    [70] Nasonkin, I.O., Ward, R.D., Raetzman, L.T. et al. Hum. Mol. Genet., 13 (2004),pp. 2727-2735
    [71] Neff, F., Flores-Dominguez, D., Ryan, D.R. et al. Rapamycin extends murine lifespan but has limited effects on aging J. Clin. Invest., 123 (2013),pp. 3272-3291
    [72] Osborne, T.B., Mendel, L.B., Ferry, E.L. The effect of retardation of growth upon the breeding period and duration of life of rats Science, 45 (1917),pp. 294-295
    [73] Partridge, L. Diet and healthy aging N. Engl. J. Med., 367 (2012),pp. 2550-2551
    [74] Passtoors, W.M., Beekman, M., Deelen, J. et al. Gene expression analysis of mTOR pathway: association with human longevity Aging Cell, 12 (2013),pp. 24-31
    [75] Piper, M.D., Selman, C., McElwee, J.J. et al. Separating cause from effect: how does insulin/IGF signalling control lifespan in worms, flies and mice? J. Intern. Med., 263 (2008),pp. 179-191
    [76] Rikke, B.A., Liao, C.Y., McQueen, M.B. et al. Genetic dissection of dietary restriction in mice supports the metabolic efficiency model of life extension Exp. Gerontol., 45 (2010),pp. 691-701
    [77] Schleit, J., Johnson, S.C., Bennett, C.F. et al. Molecular mechanisms underlying genotype-dependent responses to dietary restriction Aging Cell, 12 (2013),pp. 1050-1061
    [78] Selman, C. Dietary restriction and the pursuit of effective mimetics Proc. Nutr. Soc., 73 (2014),pp. 260-270
    [79] Selman, C., Blount, J.D., Nussey, D.H. et al. Oxidative damage, ageing, and life-history evolution: where now? Trends Ecol. Evol., 27 (2012),pp. 570-577
    [80] Selman, C., Partridge, L. A double whammy for aging? Rapamycin extends lifespan and inhibits cancer in inbred female mice Cell Cycle, 11 (2012),pp. 17-18
    [81] Selman, C., Tullet, J.M., Wieser, D. et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span Science, 326 (2009),pp. 140-144
    [82] Selman, C., Withers, D.J. Mammalian models of extended healthy lifespan Philos. Trans. R. Soc. Lond. B Biol. Sci., 366 (2011),pp. 99-107
    [83] Sheldon, W.G., Bucci, T.J., Hart, R.W. et al. Age-related neoplasia in a lifetime study of ad libitum-fed and food-restricted B6C3F1 mice Toxicol. Pathol., 23 (1995),pp. 458-476
    [84] Sheldon, W.G., Warbritton, A.R., Bucci, T.J. et al. Glaucoma in food-restricted and ad libitum-fed DBA/2NNia mice Lab. Anim. Sci., 45 (1995),pp. 508-518
    [85] Speakman, J.R., Mitchell, S.E. Caloric restriction Mol. Aspects Med., 32 (2011),pp. 159-221
    [86] Stein, P.K., Soare, A., Meyer, T.E. et al. Caloric restriction may reverse age-related autonomic decline in humans Aging Cell, 11 (2012),pp. 644-650
    [87] Storer, J.B. Longevity and gross pathology at death in 22 inbred mouse strains J. Gerontol., 21 (1966),pp. 404-409
    [88] Swindell, W.R. Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan Ageing Res. Rev., 11 (2012),pp. 254-270
    [89] Turturro, A., Witt, W.W., Lewis, S. et al. Growth curves and survival characteristics of the animals used in the Biomarkers of Aging Program J. Gerontol. A Biol. Sci. Med. Sci., 54 (1999),pp. B492-B501
    [90] Weindruch, R., Walford, R.L. Dietary restriction in mice beginning at 1 year of age: effect on life-span and spontaneous cancer incidence Science, 215 (1982),pp. 1415-1418
    [91] Weiss, E.P., Racette, S.B., Villareal, D.T. et al. Improvements in glucose tolerance and insulin action induced by increasing energy expenditure or decreasing energy intake: a randomized controlled trial Am. J. Clin. Nutr., 84 (2006),pp. 1033-1042
    [92] Wilkinson, J.E., Burmeister, L., Brooks, S.V. et al. Rapamycin slows aging in mice Aging Cell, 11 (2012),pp. 675-682
    [93] Wu, J.J., Liu, J., Chen, E.B. et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression Cell Rep., 4 (2013),pp. 913-920
    [94] Yan, L., Park, J.Y., Dillinger, J.G. et al. Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity Aging Cell, 11 (2012),pp. 1110-1120
    [95] Yuan, R., Flurkey, K., Meng, Q.Y. et al. Genetic regulation of life span, metabolism, and body weight in Pohn, a new wild-derived mouse strain J. Gerontol. A Biol. Sci. Med. Sci., 68 (2013),pp. 27-35
  • 加载中
计量
  • 文章访问数:  73
  • HTML全文浏览量:  18
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-31
  • 录用日期:  2014-06-06
  • 修回日期:  2014-06-05
  • 网络出版日期:  2014-06-14
  • 刊出日期:  2014-09-20

目录

    /

    返回文章
    返回