留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish

Jianmeng Cao Shangqi Li Ming Shao Xiaoning Cheng Zhigang Xu Deli Shi

Jianmeng Cao, Shangqi Li, Ming Shao, Xiaoning Cheng, Zhigang Xu, Deli Shi. The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(8): 417-428. doi: 10.1016/j.jgg.2014.06.008
Citation: Jianmeng Cao, Shangqi Li, Ming Shao, Xiaoning Cheng, Zhigang Xu, Deli Shi. The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish[J]. Journal of Genetics and Genomics, 2014, 41(8): 417-428. doi: 10.1016/j.jgg.2014.06.008

doi: 10.1016/j.jgg.2014.06.008

The PDZ-Containing Unconventional Myosin XVIIIA Regulates Embryonic Muscle Integrity in Zebrafish

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Bassett, D.I., Currie, P.D. The zebrafish as a model for muscular dystrophy and congenital myopathy Hum. Mol. Genet., 12 (2003),pp. R256-R270
    [2] Bassett, D.I., Bryson-Richardson, R.J., Daggett, D.F. et al. Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo Development, 130 (2003),pp. 5851-5860
    [3] Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
    [4] Berg, J.S., Powell, B.C., Cheney, R.E. A millennial myosin census Mol. Biol. Cell, 12 (2001),pp. 780-794
    [5] Berger, J., Berger, S., Hall, T.E. et al. Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology Neuromuscul. Disord., 20 (2010),pp. 826-832
    [6] Bernick, E.P., Zhang, P.J., Du, S. Knockdown and overexpression of Unc-45b result in defective myofibril organization in skeletal muscles of zebrafish embryos BMC Cell Biol., 11 (2010),p. 70
    [7] Buysse, K., Riemersma, M., Powell, G. et al. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome Hum. Mol. Genet., 22 (2013),pp. 1746-1754
    [8] Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [9] Codina, M., Li, J., Gutiérrez, J. et al. Loss of Smyhc1 or Hsp90alpha1 function results in different effects on myofibril organization in skeletal muscles of zebrafish embryos PLoS ONE, 5 (2010),p. e8416
    [10] Dippold, H.C., Ng, M.M., Farber-Katz, S.E. et al. GOLPH3 bridges phosphatidylinositol-4-phosphate and actomyosin to stretch and shape the Golgi to promote budding Cell, 139 (2009),pp. 337-351
    [11] Ehmsen, J., Poon, E., Davies, K. The dystrophin-associated protein complex J. Cell Sci., 115 (2002),pp. 2801-2803
    [12] Esapa, C.T., Benson, M.A., Schröder, J.E. et al. Functional requirements for fukutin-related protein in the Golgi apparatus Hum. Mol. Genet., 11 (2002),pp. 3319-3331
    [13] Ferrante, M.I., Kiff, R.M., Goulding, D.A. et al. Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle J. Cell Sci., 124 (2011),pp. 565-577
    [14] Foth, B.J., Goedecke, M.C., Soldati, D. New insights into myosin evolution and classification Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 3681-3686
    [15] Friedman, T.B., Sellers, J.R., Avraham, K.B. Unconventional myosins and the genetics of hearing loss Am. J. Med. Genet., 89 (1999),pp. 147-157
    [16] Furusawa, T., Ikawa, S., Yanai, N. et al. Isolation of a novel PDZ-containing myosin from hematopoietic supportive bone marrow stromal cell lines Biochem. Biophys. Res. Commun., 270 (2000),pp. 67-75
    [17] Goody, M.F., Kelly, M.W., Lessard, K.N. et al. Dev. Biol., 344 (2010),pp. 809-826
    [18] Grewal, P.K., Hewitt, J.E. Glycosylation defects: a new mechanism for muscular dystrophy? Hum. Mol. Genet., 12 (2003),pp. R259-R264
    [19] Guyon, J.R., Steffen, L.S., Howell, M.H. et al. Modeling human muscle disease in zebrafish Biochim. Biophys. Acta, 1772 (2007),pp. 205-215
    [20] Guyon, J.R., Goswami, J., Jun, S.J. et al. Genetic isolation and characterization of a splicing mutant of zebrafish dystrophin Hum. Mol. Genet., 18 (2009),pp. 202-211
    [21] Guzik-Lendrum, S., Heissler, S.M., Billington, N. et al. Mammalian myosin-18A, a highly divergent myosin J. Biol. Chem., 288 (2013),pp. 9532-9548
    [22] Hartman, M.A., Spudich, J.A. The myosin superfamily at a glance J. Cell Sci., 125 (2012),pp. 1627-1632
    [23] Hall, T.E., Bryson-Richardson, R.J., Berger, S. et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 7092-7097
    [24] Henry, C.A., McNulty, I.M., Durst, W.A. et al. Interactions between muscle fibers and segment boundaries in zebrafish Dev. Biol., 287 (2005),pp. 346-360
    [25] Hsu, R.M., Tsai, M.H., Hsieh, Y.J. et al. Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration Mol. Biol. Cell, 21 (2010),pp. 287-301
    [26] Isogawa, Y., Kon, T., Inoue, T. et al. The N-terminal domain of MYO18A has an ATP-insensitive actin-binding site Biochemistry, 44 (2005),pp. 6190-6196
    [27] Just, S., Meder, B., Berger, I.M. et al. The myosin-interacting protein SMYD1 is essential for sarcomere organization J. Cell Sci., 124 (2011),pp. 3127-3136
    [28] Kawahara, G., Guyon, J.R., Nakamura, Y. et al. Zebrafish models for human FKRP muscular dystrophies Hum. Mol. Genet., 19 (2010),pp. 623-633
    [29] Kimmel, C.B., Ballard, W.W., Kimmel, S.R. et al. Stages of embryonic development of the zebrafish Dev. Dyn., 203 (1995),pp. 253-310
    [30] Lei, Y., Guo, X., Liu, Y. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 17484-17489
    [31] Lin, Y.Y. Muscle diseases in the zebrafish Neuromuscul. Disord., 22 (2012),pp. 673-684
    [32] Lin, Y.Y., White, R.J., Torelli, S. et al. Zebrafish Fukutin family proteins link the unfolded protein response with dystroglycanopathies Hum. Mol. Genet., 20 (2011),pp. 1763-1775
    [33] McGrew, M.J., Pourquié, O. Somitogenesis: segmenting a vertebrate Curr. Opin. Genet. Dev., 8 (1998),pp. 487-493
    [34] Mori, K., Furusawa, T., Okubo, T. et al. Genome structure and differential expression of two isoforms of a novel PDZ-containing myosin (MysPDZ) (Myo18A) J. Biochem., 133 (2003),pp. 405-413
    [35] Mori, K., Matsuda, K., Furusawa, T. et al. Subcellular localization and dynamics of MysPDZ (Myo18A) in live mammalian cells Biochem. Biophys. Res. Commun., 326 (2005),pp. 491-498
    [36] Oldfors, A. Hereditary myosin myopathies Neuromuscul. Disord., 17 (2007),pp. 355-367
    [37] Pauli, A., Valen, E., Lin, M.F. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis Genome Res., 22 (2012),pp. 577-591
    [38] Parsons, M.J., Campos, I., Hirst, E.M. et al. Removal of dystroglycan causes severe muscular dystrophy in zebrafish embryos Development, 129 (2002),pp. 3505-3512
    [39] Percival, J.M., Froehner, S.C. Golgi complex organization in skeletal muscle: a role for Golgi-mediated glycosylation in muscular dystrophies? Traffic, 8 (2007),pp. 184-194
    [40] Richards, T.A., Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes Nature, 436 (2005),pp. 1113-1118
    [41] Ruparelia, A.A., Zhao, M., Currie, P.D. et al. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy Hum. Mol. Genet., 21 (2012),pp. 4073-4483
    [42] Rupp, R.A., Weintraub, H. Cell, 65 (1991),pp. 927-937
    [43] Sittaramane, V., Chandrasekhar, A. Expression of unconventional myosin genes during neuronal development in zebrafish Gene Expr. Patterns, 8 (2008),pp. 161-170
    [44] Spence, H.J., Chen, Y.J., Winder, S.J. Muscular dystrophies, the cytoskeleton and cell adhesion BioEssays, 24 (2002),pp. 542-552
    [45] Steffen, L.S., Guyon, J.R., Vogel, E.D. et al. The zebrafish runzel muscular dystrophy is linked to the titin gene Dev. Biol., 309 (2007),pp. 180-192
    [46] Stevens, E., Carss, K.J., Cirak, S. et al. Am. J. Hum. Genet., 92 (2013),pp. 354-365
    [47] Sweeney, H.L., Houdusse, A. Structural and functional insights into the Myosin motor mechanism Annu. Rev. Biophys., 39 (2010),pp. 539-557
    [48] Tan, I., Yong, J., Dong, J.M. et al. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow Cell, 135 (2008),pp. 123-136
    [49] Thisse, C., Thisse, B. Nat. Protoc., 3 (2008),pp. 59-69
    [50] Umbhauer, M., Djiane, A., Goisset, C. et al. The C-terminal cytoplasmic Lys-Thr-X-X-X-Trp motif in frizzled receptors mediates Wnt/beta-catenin signalling EMBO J., 19 (2000),pp. 4944-4954
    [51] Xu, J., Gao, J., Li, J. et al. Functional analysis of slow myosin heavy chain 1 and myomesin-3 in sarcomere organization in zebrafish embryonic slow muscles J. Genet. Genomics, 39 (2012),pp. 69-80
    [52] Yan, D., Liu, X.Z. Genetics and pathological mechanisms of Usher syndrome J. Hum. Genet., 55 (2010),pp. 327-335
    [53] Zhong, W. Golgi during development Cold Spring Harb. Perspect. Biol., 3 (2011),p. a005363
  • 加载中
计量
  • 文章访问数:  133
  • HTML全文浏览量:  43
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-07
  • 录用日期:  2014-06-27
  • 修回日期:  2014-06-27
  • 网络出版日期:  2014-07-17
  • 刊出日期:  2014-08-20

目录

    /

    返回文章
    返回