留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Towards Understanding RNA-Mediated Neurological Disorders

Ranhui Duan Sumeet Sharma Qiuping Xia Kathryn Garber Peng Jin

Ranhui Duan, Sumeet Sharma, Qiuping Xia, Kathryn Garber, Peng Jin. Towards Understanding RNA-Mediated Neurological Disorders[J]. Journal of Genetics and Genomics, 2014, 41(9): 473-484. doi: 10.1016/j.jgg.2014.08.003
Citation: Ranhui Duan, Sumeet Sharma, Qiuping Xia, Kathryn Garber, Peng Jin. Towards Understanding RNA-Mediated Neurological Disorders[J]. Journal of Genetics and Genomics, 2014, 41(9): 473-484. doi: 10.1016/j.jgg.2014.08.003

doi: 10.1016/j.jgg.2014.08.003

Towards Understanding RNA-Mediated Neurological Disorders

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Aguilera, A., Garcia-Muse, T. R loops: from transcription byproducts to threats to genome stability Mol. Cell, 46 (2012),pp. 115-124
    [2] Amack, J.D., Paguio, A.P., Mahadevan, M.S. Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model Hum. Mol. Genet., 8 (1999),pp. 1975-1984
    [3] Amato, A.A.
    [4] Arocena, D.G., Iwahashi, C.K., Won, N. et al. Induction of inclusion formation and disruption of lamin A/C structure by premutation CGG-repeat RNA in human cultured neural cells Hum. Mol. Genet., 14 (2005),pp. 3661-3671
    [5] Ash, P.E., Bieniek, K.F., Gendron, T.F. et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS Neuron, 77 (2013),pp. 639-646
    [6] Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [7] Batista, P.J., Chang, H.Y. Long noncoding RNAs: cellular address codes in development and disease Cell, 152 (2013),pp. 1298-1307
    [8] Brook, J.D., McCurrach, M.E., Harley, H.G. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member Cell, 68 (1992),pp. 799-808
    [9] Charlet, B.N., Savkur, R.S., Singh, G. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing Mol. Cell, 10 (2002),pp. 45-53
    [10] Colak, D., Zaninovic, N., Cohen, M.S. et al. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome Science, 343 (2014),pp. 1002-1005
    [11] Dansithong, W., Paul, S., Comai, L. et al. MBNL1 is the primary determinant of focus formation and aberrant insulin receptor splicing in DM1 J. Biol. Chem., 280 (2005),pp. 5773-5780
    [12] David, G., Abbas, N., Stevanin, G. et al. Nat. Genet., 17 (1997),pp. 65-70
    [13] Davis, B.M., McCurrach, M.E., Taneja, K.L. et al. Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts Proc. Natl. Acad. Sci. USA, 94 (1997),pp. 7388-7393
    [14] Day, J.W., Schut, L.J., Moseley, M.L. et al. Spinocerebellar ataxia type 8: clinical features in a large family Neurology, 55 (2000),pp. 649-657
    [15] de Haro, M., Al-Ramahi, I., De Gouyon, B. et al. Hum. Mol. Genet., 15 (2006),pp. 2138-2145
    [16] DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F. et al. Neuron, 72 (2011),pp. 245-256
    [17] Donnelly, C.J., Zhang, P.W., Pham, J.T. et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention Neuron, 80 (2013),pp. 415-428
    [18] Encode Project Consortium An integrated encyclopedia of DNA elements in the human genome Nature, 489 (2012),pp. 57-74
    [19] Erdmann, V.A., Barciszewska, M.Z., Hochberg, A. et al. Regulatory RNAs Cell. Mol. Life Sci., 58 (2001),pp. 960-977
    [20] Faghihi, M.A., Wahlestedt, C. Regulatory roles of natural antisense transcripts Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 637-643
    [21] Fardaei, M., Larkin, K., Brook, J.D. et al. Nucleic Acids Res., 29 (2001),pp. 2766-2771
    [22] Fardaei, M., Rogers, M.T., Thorpe, H.M. et al. Hum. Mol. Genet., 11 (2002),pp. 805-814
    [23] Fatica, A., Bozzoni, I. Long non-coding RNAs: new players in cell differentiation and development Nat. Rev. Genet., 15 (2014),pp. 7-21
    [24] Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet., 9 (2008),pp. 102-114
    [25] Fu, Y.H., Pizzuti, A., , King, J. et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy Science, 255 (1992),pp. 1256-1258
    [26] Gendron, T.F., Belzil, V.V., Zhang, Y.J. et al. Mechanisms of toxicity in C9FTLD/ALS Acta Neuropathol., 127 (2014),pp. 359-376
    [27] Gendron, T.F., Bieniek, K.F., Zhang, Y.J. et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS Acta Neuropathol., 126 (2013),pp. 829-844
    [28] Giordana, M.T., Ferrero, P., Grifoni, S. et al. Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review Neurol. Sci., 32 (2011),pp. 9-16
    [29] Grammatikakis, I., Goo, Y.H., Echeverria, G.V. et al. Identification of MBNL1 and MBNL3 domains required for splicing activation and repression Nucleic Acids Res., 39 (2011),pp. 2769-2780
    [30] Greco, C.M., Berman, R.F., Martin, R.M. et al. Neuropathology of fragile X-associated tremor/ataxia syndrome (FXTAS) Brain, 129 (2006),pp. 243-255
    [31] Greco, C.M., Hagerman, R.J., Tassone, F. et al. Neuronal intranuclear inclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers Brain, 125 (2002),pp. 1760-1771
    [32] Greenstein, P.E., Vonsattel, J.P., Margolis, R.L. et al. Huntington's disease like-2 neuropathology Mov. Disord., 22 (2007),pp. 1416-1423
    [33] Groh, M., Lufino, M.M., Wade-Martins, R. et al. R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome PLoS Genet., 10 (2014),p. e1004318
    [34] Haeusler, A.R., Donnelly, C.J., Periz, G. et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease Nature, 507 (2014),pp. 195-200
    [35] Hagerman, P.J., Hagerman, R.J. The fragile-X premutation: a maturing perspective Am. J. Hum. Genet., 74 (2004),pp. 805-816
    [36] Hagerman, R.J., Hagerman, P.J. The fragile X premutation: into the phenotypic fold Curr. Opin. Genet. Dev., 12 (2002),pp. 278-283
    [37] Hann, S.R., King, M.W., Bentley, D.L. et al. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt's lymphomas Cell, 52 (1988),pp. 185-195
    [38] Hastings, M.L., Ingle, H.A., Lazar, M.A. et al. J. Biol. Chem., 275 (2000),pp. 11507-11513
    [39] He, Y., Vogelstein, B., Velculescu, V.E. et al. The antisense transcriptomes of human cells Science, 322 (2008),pp. 1855-1857
    [40] Ho, T.H., Bundman, D., Armstrong, D.L. et al. Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy Hum. Mol. Genet., 14 (2005),pp. 1539-1547
    [41] Ho, T.H., Charlet, B.N., Poulos, M.G. et al. Muscleblind proteins regulate alternative splicing EMBO J., 23 (2004),pp. 3103-3112
    [42] Holmes, S.E., O'Hearn, E., Rosenblatt, A. et al. A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2 Nat. Genet., 29 (2001),pp. 377-378
    [43] Iwahashi, C.K., Yasui, D.H., An, H.J. et al. Protein composition of the intranuclear inclusions of FXTAS Brain, 129 (2006),pp. 256-271
    [44] Jacquemont, S., Hagerman, R.J., Leehey, M. et al. Fragile X premutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates Am. J. Hum. Genet., 72 (2003),pp. 869-878
    [45] Jiang, H., Mankodi, A., Swanson, M.S. et al. Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons Hum. Mol. Genet., 13 (2004),pp. 3079-3088
    [46] Jin, P., Duan, R., Qurashi, A. et al. Neuron, 55 (2007),pp. 556-564
    [47] Jin, P., Zarnescu, D.C., Zhang, F. et al. Neuron, 39 (2003),pp. 739-747
    [48] Kalsotra, A., Xiao, X., Ward, A.J. et al. A postnatal switch of CELF and MBNL proteins reprograms alternative splicing in the developing heart Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 20333-20338
    [49] Kanadia, R.N., Johnstone, K.A., Mankodi, A. et al. A muscleblind knockout model for myotonic dystrophy Science, 302 (2003),pp. 1978-1980
    [50] Kanadia, R.N., Shin, J., Yuan, Y. et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 11748-11753
    [51] Kenneson, A., Zhang, F., Hagedorn, C.H. et al. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers Hum. Mol. Genet., 10 (2001),pp. 1449-1454
    [52] Khalil, A.M., Faghihi, M.A., Modarresi, F. et al. A novel RNA transcript with antiapoptotic function is silenced in fragile X syndrome PLoS ONE, 3 (2008),p. e1486
    [53] Knee, R., Murphy, P.R. Regulation of gene expression by natural antisense RNA transcripts Neurochem. Int., 31 (1997),pp. 379-392
    [54] Koob, M.D., Moseley, M.L., Schut, L.J. et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) Nat. Genet., 21 (1999),pp. 379-384
    [55] Kozak, M. Context effects and inefficient initiation at non-AUG codons in eukaryotic cell-free translation systems Mol. Cell Biol., 9 (1989),pp. 5073-5080
    [56] Kremer, E.J., Pritchard, M., Lynch, M. et al. Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n Science, 252 (1991),pp. 1711-1714
    [57] Krol, J., Loedige, I., Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay Nat. Rev. Genet., 11 (2010),pp. 597-610
    [58] Kuyumcu-Martinez, N.M., Wang, G.S., Cooper, T.A. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation Mol. Cell, 28 (2007),pp. 68-78
    [59] La Spada, A.R., Fu, Y.H., Sopher, B.L. et al. Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7 Neuron, 31 (2001),pp. 913-927
    [60] Ladd, P.D., Smith, L.E., Rabaia, N.A. et al. An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals Hum. Mol. Genet., 16 (2007),pp. 3174-3187
    [61] Lagier-Tourenne, C., Baughn, M., Rigo, F. et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E4530-E4539
    [62] Lee, Y.B., Chen, H.J., Peres, J.N. et al. Hexanucleotide repeats in ALS/FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic Cell Rep., 5 (2013),pp. 1178-1186
    [63] Li, A.W., Murphy, P.R. Expression of alternatively spliced FGF-2 antisense RNA transcripts in the central nervous system: regulation of FGF-2 mRNA translation Mol. Cell. Endocrinol., 170 (2000),pp. 233-242
    [64] Li, Y., Jin, P. RNA-mediated neurodegeneration in fragile X-associated tremor/ataxia syndrome Brain Res., 1462 (2012),pp. 112-117
    [65] Lin, X., Miller, J.W., Mankodi, A. et al. Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy Hum. Mol. Genet., 15 (2006),pp. 2087-2097
    [66] Liquori, C.L., Ricker, K., Moseley, M.L. et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9 Science, 293 (2001),pp. 864-867
    [67] Loomis, E.W., Sanz, L.A., Chedin, F. et al. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region PLoS Genet., 10 (2014),p. e1004294
    [68] Mankodi, A., Lin, X., Blaxall, B.C. et al. Nuclear RNA foci in the heart in myotonic dystrophy Circ. Res., 97 (2005),pp. 1152-1155
    [69] Mankodi, A., Logigian, E., Callahan, L. et al. Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat Science, 289 (2000),pp. 1769-1773
    [70] Mankodi, A., Takahashi, M.P., Jiang, H. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy Mol. Cell, 10 (2002),pp. 35-44
    [71] Mankodi, A., Urbinati, C.R., Yuan, Q.P. et al. Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2 Hum. Mol. Genet., 10 (2001),pp. 2165-2170
    [72] Margolis, R.L., Holmes, S.E., Rosenblatt, A. et al. Huntington's Disease-like 2 (HDL2) in North America and Japan Ann. Neurol., 56 (2004),pp. 670-674
    [73] Margolis, R.L., O'Hearn, E., Rosenblatt, A. et al. A disorder similar to Huntington's disease is associated with a novel CAG repeat expansion Ann. Neurol., 50 (2001),pp. 373-380
    [74] Marsh, J.L., Walker, H., Theisen, H. et al. Hum. Mol. Genet., 9 (2000),pp. 13-25
    [75] Miller, J.W., Urbinati, C.R., Teng-Umnuay, P. et al. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy EMBO J., 19 (2000),pp. 4439-4448
    [76] Mizielinska, S., Lashley, T., Norona, F.E. et al. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci Acta Neuropathol., 126 (2013),pp. 845-857
    [77] Mori, K., Arzberger, T., Grasser, F.A. et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins Acta Neuropathol., 126 (2013),pp. 881-893
    [78] Mori, K., Lammich, S., Mackenzie, I.R. et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations Acta Neuropathol., 125 (2013),pp. 413-423
    [79] Mori, K., Weng, S.M., Arzberger, T. et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS Science, 339 (2013),pp. 1335-1338
    [80] Moseley, M.L., Zu, T., Ikeda, Y. et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8 Nat. Genet., 38 (2006),pp. 758-769
    [81] Mutsuddi, M., Marshall, C.M., Benzow, K.A. et al. Curr. Biol., 14 (2004),pp. 302-308
    [82] Nelson, D.L., Orr, H.T., Warren, S.T. The unstable repeats–three evolving faces of neurological disease Neuron, 77 (2013),pp. 825-843
    [83] Oberle, I., Rousseau, F., Heitz, D. et al. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome Science, 252 (1991),pp. 1097-1102
    [84] Orengo, J.P., Chambon, P., Metzger, D. et al. Expanded CTG repeats within the DMPK 3′ UTR causes severe skeletal muscle wasting in an inducible mouse model for myotonic dystrophy Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 2646-2651
    [85] Peabody, D.S. Translation initiation at non-AUG triplets in mammalian cells J. Biol. Chem., 264 (1989),pp. 5031-5035
    [86] Pearson, C.E. Repeat associated non-ATG translation initiation: one DNA, two transcripts, seven reading frames, potentially nine toxic entities! PLoS Genet., 7 (2011),p. e1002018
    [87] Pieretti, M., Zhang, F.P., Fu, Y.H. et al. Cell, 66 (1991),pp. 817-822
    [88] Rademakers, R., Neumann, M., Mackenzie, I.R. Advances in understanding the molecular basis of frontotemporal dementia Nat. Rev. Neurol., 8 (2012),pp. 423-434
    [89] Renton, A.E., Majounie, E., Waite, A. et al. Neuron, 72 (2011),pp. 257-268
    [90] Robberecht, W., Philips, T. The changing scene of amyotrophic lateral sclerosis Nat. Rev. Neurosci., 14 (2013),pp. 248-264
    [91] Rudnicki, D.D., Holmes, S.E., Lin, M.W. et al. Huntington's disease–like 2 is associated with CUG repeat-containing RNA foci Ann. Neurol., 61 (2007),pp. 272-282
    [92] Rudnicki, D.D., Pletnikova, O., Vonsattel, J.P. et al. A comparison of huntington disease and huntington disease-like 2 neuropathology J. Neuropathol. Exp. Neurol., 67 (2008),pp. 366-374
    [93] Rutherford, N.J., Heckman, M.G., Dejesus-Hernandez, M. et al. Neurbiol. Aging, 33 (2012),pp. e2955-2957
    [94] Savkur, R.S., Philips, A.V., Cooper, T.A. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy Nat. Genet., 29 (2001),pp. 40-47
    [95] Sellier, C., Rau, F., Liu, Y. et al. Sam68 sequestration and partial loss of function are associated with splicing alterations in FXTAS patients EMBO J., 29 (2010),pp. 1248-1261
    [96] Sen, S., Talukdar, I., Liu, Y. et al. J. Biol. Chem., 285 (2010),pp. 25426-25437
    [97] Seznec, H., Agbulut, O., Sergeant, N. et al. Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities Hum. Mol. Genet., 10 (2001),pp. 2717-2726
    [98] Sofola, O.A., Jin, P., Qin, Y. et al. Neuron, 55 (2007),pp. 565-571
    [99] Stepto, A., Gallo, J.M., Shaw, C.E. et al. Modelling C9ORF72 hexanucleotide repeat expansion in amyotrophic lateral sclerosis and frontotemporal dementia Acta Neuropathol., 127 (2014),pp. 377-389
    [100] Tan, H., Poidevin, M., Li, H. et al. MicroRNA-277 modulates the neurodegeneration caused by Fragile X premutation rCGG repeats PLoS Genet., 8 (2012),p. e1002681
    [101] Taneja, K.L., McCurrach, M., Schalling, M. et al. Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues J. Cell Biol., 128 (1995),pp. 995-1002
    [102] Tassone, F., Beilina, A., Carosi, C. et al. Elevated FMR1 mRNA in premutation carriers is due to increased transcription RNA, 13 (2007),pp. 555-562
    [103] Tassone, F., Hagerman, R.J., Taylor, A.K. et al. Am. J. Hum. Genet., 66 (2000),pp. 6-15
    [104] Tassone, F., Iwahashi, C., Hagerman, P.J. FMR1 RNA within the intranuclear inclusions of fragile X-associated tremor/ataxia syndrome (FXTAS) RNA Biol., 1 (2004),pp. 103-105
    [105] Timchenko, L.T., Miller, J.W., Timchenko, N.A. et al. Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy Nucleic Acids Res., 24 (1996),pp. 4407-4414
    [106] Timchenko, N.A., Cai, Z.J., Welm, A.L. et al. RNA CUG repeats sequester CUGBP1 and alter protein levels and activity of CUGBP1 J. Biol. Chem., 276 (2001),pp. 7820-7826
    [107] Todd, P.K., Oh, S.Y., Krans, A. et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome Neuron, 78 (2013),pp. 440-455
    [108] Udd, B., Krahe, R. The myotonic dystrophies: molecular, clinical, and therapeutic challenges Lancet Neurol., 11 (2012),pp. 891-905
    [109] Verkerk, A.J., Pieretti, M., Sutcliffe, J.S. et al. Cell, 65 (1991),pp. 905-914
    [110] Wang, G.S., Kuyumcu-Martinez, M.N., Sarma, S. et al. PKC inhibition ameliorates the cardiac phenotype in a mouse model of myotonic dystrophy type 1 J. Clin. Invest., 119 (2009),pp. 3797-3806
    [111] Wilburn, B., Rudnicki, D.D., Zhao, J. et al. Neuron, 70 (2011),pp. 427-440
    [112] Willemsen, R., Hoogeveen-Westerveld, M., Reis, S. et al. Hum. Mol. Genet., 12 (2003),pp. 949-959
    [113] Xu, Z., Poidevin, M., Li, X. et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 7778-7783
    [114] Yelin, R., Dahary, D., Sorek, R. et al. Widespread occurrence of antisense transcription in the human genome Nat. Biotechnol., 21 (2003),pp. 379-386
    [115] Zu, T., Gibbens, B., Doty, N.S. et al. Non-ATG-initiated translation directed by microsatellite expansions Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 260-265
    [116] Zu, T., Liu, Y., Banez-Coronel, M. et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E4968-E4977
  • 加载中
计量
  • 文章访问数:  91
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-25
  • 录用日期:  2014-08-12
  • 修回日期:  2014-08-10
  • 网络出版日期:  2014-08-23
  • 刊出日期:  2014-09-20

目录

    /

    返回文章
    返回