留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Single-Cell Sequencing Technologies: Current and Future

Jialong Liang Wanshi Cai Zhongsheng Sun

Jialong Liang, Wanshi Cai, Zhongsheng Sun. Single-Cell Sequencing Technologies: Current and Future[J]. Journal of Genetics and Genomics, 2014, 41(10): 513-528. doi: 10.1016/j.jgg.2014.09.005
Citation: Jialong Liang, Wanshi Cai, Zhongsheng Sun. Single-Cell Sequencing Technologies: Current and Future[J]. Journal of Genetics and Genomics, 2014, 41(10): 513-528. doi: 10.1016/j.jgg.2014.09.005

doi: 10.1016/j.jgg.2014.09.005

Single-Cell Sequencing Technologies: Current and Future

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Adereth, Y., Dammai, V., Kose, N. et al. RNA-dependent integrin alpha3 protein localization regulated by the muscleblind-like protein MLP1 Nat. Cell Biol., 7 (2005),pp. 1240-1247
    [2] Adli, M., Bernstein, B.E. Whole-genome chromatin profiling from limited numbers of cells using nano-ChIP-seq Nat. Protoc., 6 (2011),pp. 1656-1668
    [3] Baslan, T., Kendall, J., Rodgers, L. et al. Genome-wide copy number analysis of single cells Nat. Protoc., 7 (2012),pp. 1024-1041
    [4] Bassing, C.H., Swat, W., Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination Cell, 109 (2002),pp. S45-S55
    [5] Bengtsson, M., Stahlberg, A., Rorsman, P. et al. Gene expression profiling in single cells from the pancreatic islets of Langerhans reveals lognormal distribution of mRNA levels Genome Res., 15 (2005),pp. 1388-1392
    [6] Bhattacharyya, S., Yu, Y.T., Suzuki, M. et al. Genome-wide hydroxymethylation tested using the HELP-GT assay shows redistribution in cancer Nucleic Acids Res., 41 (2013),p. e157
    [7] Blanco, L., Bernad, A., Lazaro, J.M. et al. Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication J. Biol. Chem., 264 (1989),pp. 8935-8940
    [8] Booth, M.J., Branco, M.R., Ficz, G. et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution Science, 336 (2012),pp. 934-937
    [9] Brook, J.D., Mccurrach, M.E., Harley, H.G. et al. Molecular-basis of myotonic-dystrophy-expansion of a trinucleotide (Ctg) repeat at the 3′ end of a transcript encoding a protein-kinase family member Cell, 68 (1992),pp. 799-808
    [10] Cann, G.M., Gulzar, Z.G., Cooper, S. et al. mRNA-seq of single prostate cancer circulating tumor cells reveals recapitulation of gene expression and pathways found in prostate cancer PLoS ONE, 7 (2012),p. e49144
    [11] Casbon, J.A., Osborne, R.J., Brenner, S. et al. A method for counting PCR template molecules with application to next-generation sequencing Nucleic Acids Res., 39 (2011),p. e81
    [12] Cheung, V.G., Nelson, S.F. Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 14676-14679
    [13] Cho, B.S., Schuster, T.G., Zhu, X. et al. Passively driven integrated microfluidic system for separation of motile sperm Anal. Chem., 75 (2003),pp. 1671-1675
    [14] Choy, M.K., Movassagh, M., Goh, H.G. et al. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated BMC Genomics, 11 (2010),p. 519
    [15] Citri, A., Pang, Z.P., Sudhof, T.C. et al. Comprehensive qPCR profiling of gene expression in single neuronal cells Nat. Protoc., 7 (2012),pp. 118-127
    [16] Cohen, A.A., Geva-Zatorsky, N., Eden, E. et al. Dynamic proteomics of individual cancer cells in response to a drug Science, 322 (2008),pp. 1511-1516
    [17] Cristofanilli, M., Budd, G.T., Ellis, M.J. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer N. Engl. J. Med., 351 (2004),pp. 781-791
    [18] Dean, F.B., Hosono, S., Fang, L.H. et al. Comprehensive human genome amplification using multiple displacement amplification Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 5261-5266
    [19] Dean, F.B., Nelson, J.R., Giesler, T.L. et al. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification Genome Res., 11 (2001),pp. 1095-1099
    [20] Deaton, A.M., Bird, A. CpG islands and the regulation of transcription Genes Dev., 25 (2011),pp. 1010-1022
    [21] Deng, Q., Ramskold, D., Reinius, B. et al. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells Science, 343 (2014),pp. 193-196
    [22] Ding, L., Ley, T.J., Larson, D.E. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing Nature, 481 (2012),pp. 506-510
    [23] Eberwine, J., Yeh, H., Miyashiro, K. et al. Analysis of gene expression in single live neurons Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 3010-3014
    [24] Echols, H., Goodman, M.F. Fidelity mechanisms in DNA replication Annu. Rev. Biochem., 60 (1991),pp. 477-511
    [25] Eckert, K.A., Kunkel, T.A. DNA polymerase fidelity and the polymerase chain reaction PCR Methods Appl., 1 (1991),pp. 17-24
    [26] Ephrussi, A., Dickinson, L.K., Lehmann, R. Oskar organizes the germ plasm and directs localization of the posterior determinant nanos Cell, 66 (1991),pp. 37-50
    [27] Espina, V., Wulfkuhle, J.D., Calvert, V.S. et al. Laser-capture microdissection Nat. Protoc., 1 (2006),pp. 586-603
    [28] Esteller, M. Cancer epigenomics: DNA methylomes and histone-modification maps Nat. Rev. Genet., 8 (2007),pp. 286-298
    [29] Flusberg, B.A., Webster, D.R., Lee, J.H. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing Nat. Methods, 7 (2010),pp. 461-465
    [30] Fujimoto, A., Totoki, Y., Abe, T. et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators Nat. Genet., 44 (2012),pp. 760-764
    [31] Furey, T.S. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions Nat. Rev. Genet., 13 (2012),pp. 840-852
    [32] Gaudet, F., Hodgson, J.G., Eden, A. et al. Induction of tumors in mice by genomic hypomethylation Science, 300 (2003),pp. 489-492
    [33] Gavis, E.R., Lehmann, R. Localization of nanos RNA controls embryonic polarity Cell, 71 (1992),pp. 301-313
    [34] Goetz, J.J., Trimarchi, J.M. Transcriptome sequencing of single cells with Smart-Seq Nat. Biotechnol., 30 (2012),pp. 763-765
    [35] Gole, J., Gore, A., Richards, A. et al. Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells Nat. Biotechnol., 31 (2013),pp. 1126-1132
    [36] Guo, H., Zhu, P., Wu, X. et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing Genome Res., 23 (2013),pp. 2126-2135
    [37] Guo, H., Zhu, P., Yan, L. et al. The DNA methylation landscape of human early embryos Nature, 511 (2014),pp. 606-610
    [38] Guo, J.U., Su, Y., Zhong, C. et al. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain Cell, 145 (2011),pp. 423-434
    [39] Hashimshony, T., Wagner, F., Sher, N. et al. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification Cell Rep., 2 (2012),pp. 666-673
    [40] Hockner, M., Erdel, M., Spreiz, A. et al. Whole genome amplification from microdissected chromosomes Cytogenet. Genome Res., 125 (2009),pp. 98-102
    [41] Hosono, S., Faruqi, A.F., Dean, F.B. et al. Unbiased whole-genome amplification directly from clinical samples Genome Res., 13 (2003),pp. 954-964
    [42] Hou, Y., Fan, W., Yan, L. et al. Genome analyses of single human oocytes Cell, 155 (2013),pp. 1492-1506
    [43] Hou, Y., Song, L., Zhu, P. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm Cell, 148 (2012),pp. 873-885
    [44] Hughes, J.R., Bullock, S.L., Ish-Horowicz, D. Curr. Biol., 14 (2004),pp. 1950-1956
    [45] Hussein, S.M., Batada, N.N., Vuoristo, S. et al. Copy number variation and selection during reprogramming to pluripotency Nature, 471 (2011),pp. 58-62
    [46] Inoue, J., Shigemori, Y., Mikawa, T. Nucleic Acids Res., 34 (2006),p. e69
    [47] Islam, S., Kjallquist, U., Moliner, A. et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq Genome Res., 21 (2011),pp. 1160-1167
    [48] Islam, S., Zeisel, A., Joost, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers Nat. Methods, 11 (2014),pp. 163-166
    [49] Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types Science, 343 (2014),pp. 776-779
    [50] Jones, P.A. Functions of DNA methylation: islands, start sites, gene bodies and beyond Nat. Rev. Genet., 13 (2012),pp. 484-492
    [51] Kellogg, R.A., Gomez-Sjoberg, R., Leyrat, A.A. et al. High-throughput microfluidic single-cell analysis pipeline for studies of signaling dynamics Nat. Protoc., 9 (2014),pp. 1713-1726
    [52] Kivioja, T., Vaharautio, A., Karlsson, K. et al. Counting absolute numbers of molecules using unique molecular identifiers Nat. Methods, 9 (2012),pp. 72-74
    [53] Ko, M., Huang, Y., Jankowska, A.M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2 Nature, 468 (2010),pp. 839-843
    [54] Koh, K.P., Yabuuchi, A., Rao, S. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells Cell Stem Cell, 8 (2011),pp. 200-213
    [55] Koob, M.D., Moseley, M.L., Schut, L.J. et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8) Nat. Genet., 21 (1999),pp. 379-384
    [56] Kurimoto, K., Yabuta, Y., Ohinata, Y. et al. An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis Nucleic Acids Res., 34 (2006),p. e42
    [57] Kurimoto, K., Yabuta, Y., Ohinata, Y. et al. Global single-cell cDNA amplification to provide a template for representative high-density oligonucleotide microarray analysis Nat. Protoc., 2 (2007),pp. 739-752
    [58] Lasken, R.S. Genomic sequencing of uncultured microorganisms from single cells Nat. Rev. Microbiol., 10 (2012),pp. 631-640
    [59] Lasken, R.S. Single-cell sequencing in its prime Nat. Biotechnol., 31 (2013),pp. 211-212
    [60] Laszlo, A.H., Derrington, I.M., Brinkerhoff, H. et al. Detection and mapping of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore MspA Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 18904-18909
    [61] Laurent, L.C., Ulitsky, I., Slavin, I. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture Cell Stem Cell, 8 (2011),pp. 106-118
    [62] Lawrence, J.B., Singer, R.H. Intracellular-localization of messenger RNAs for cytoskeletal proteins Cell, 45 (1986),pp. 407-415
    [63] Lecuyer, E., Yoshida, H., Parthasarathy, N. et al. Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function Cell, 131 (2007),pp. 174-187
    [64] Lee, J.H., Daugharthy, E.R., Scheiman, J. et al. Science, 343 (2014),pp. 1360-1363
    [65] Ling, H.Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [66] Lorthongpanich, C., Cheow, L.F., Balu, S. et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos Science, 341 (2013),pp. 1110-1112
    [67] Lu, S., Zong, C., Fan, W. et al. Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing Science, 338 (2012),pp. 1627-1630
    [68] Macaulay, I.C., Voet, T. Single cell genomics: advances and future perspectives PLoS Genet., 10 (2014),p. e1004126
    [69] Marcy, Y., Ishoey, T., Lasken, R.S. et al. Nanoliter reactors improve multiple displacement amplification of genomes from single cells PLoS Genet., 3 (2007),pp. 1702-1708
    [70] Marcy, Y., Ouverney, C., Bik, E.M. et al. Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11889-11894
    [71] Marshall, I.P.G., Blainey, P.C., Spormann, A.M. et al. Appl. Environ. Microbiol., 78 (2012),pp. 8555-8563
    [72] Maryanski, J.L., Jongeneel, C.V., Bucher, P. et al. Immunity, 4 (1996),pp. 47-55
    [73] McConnell, M.J., Lindberg, M.R., Brennand, K.J. et al. Mosaic copy number variation in human neurons Science, 342 (2013),pp. 632-637
    [74] Meissner, A., Gnirke, A., Bell, G.W. et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis Nucleic Acids Res., 33 (2005),pp. 5868-5877
    [75] Michaelson, J.J., Shi, Y., Gujral, M. et al. Cell, 151 (2012),pp. 1431-1442
    [76] Mortazavi, A., Williams, B.A., McCue, K. et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq Nat. Methods, 5 (2008),pp. 621-628
    [77] Myers, S., Bottolo, L., Freeman, C. et al. A fine-scale map of recombination rates and hotspots across the human genome Science, 310 (2005),pp. 321-324
    [78] Nan, X., Ng, H.H., Johnson, C.A. et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex Nature, 393 (1998),pp. 386-389
    [79] Navin, N., Kendall, J., Troge, J. et al. Tumour evolution inferred by single-cell sequencing Nature, 472 (2011),pp. 90-94
    [80] Ni, X.H., Zhuo, M.L., Su, Z. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 21083-21088
    [81] Obokata, H., Sasai, Y., Niwa, H. et al. Bidirectional developmental potential in reprogrammed cells with acquired pluripotency Nature, 505 (2014),pp. 676-680
    [82] Ozsolak, F., Platt, A.R., Jones, D.R. et al. Direct RNA sequencing Nature, 461 (2009),pp. 814-818
    [83] Patel, A.P., Tirosh, I., Trombetta, J.J. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma Science, 344 (2014),pp. 1396-1401
    [84] Paterlini-Brechot, P., Benali, N.L. Circulating tumor cells (CTC) detection: clinical impact and future directions Cancer Lett., 253 (2007),pp. 180-204
    [85] Peach, G., Kim, C., Zacharakis, E. et al. Prognostic significance of circulating tumour cells following surgical resection of colorectal cancers: a systematic review Br. J. Cancer, 102 (2010),pp. 1327-1334
    [86] Petersen, M., Wengel, J. LNA: a versatile tool for therapeutics and genomics Trends Biotechnol., 21 (2003),pp. 74-81
    [87] Petronczki, M., Siomos, M.F., Nasmyth, K. Un menage a quatre: the molecular biology of chromosome segregation in meiosis Cell, 112 (2003),pp. 423-440
    [88] Picelli, S., Bjorklund, A.K., Faridani, O.R. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells Nat. Methods, 10 (2013),pp. 1096-1098
    [89] Picelli, S., Faridani, O.R., Bjorklund, A.K. et al. Full-length RNA-seq from single cells using Smart-seq2 Nat. Protoc., 9 (2014),pp. 171-181
    [90] Potter, N.E., Ermini, L., Papaemmanuil, E. et al. Single-cell mutational profiling and clonal phylogeny in cancer Genome Res., 23 (2013),pp. 2115-2125
    [91] Puente, X.S., Pinyol, M., Quesada, V. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia Nature, 475 (2011),pp. 101-105
    [92] Raghunathan, A., , Bornarth, C.J., Song, W. et al. Genomic DNA amplification from a single bacterium Appl. Environ. Microbiol., 71 (2005),pp. 3342-3347
    [93] Raj, A., van Oudenaarden, A. Single-molecule approaches to stochastic gene expression Annu. Rev. Biophys., 38 (2009),pp. 255-270
    [94] Ramskold, D., Luo, S., Wang, Y.C. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells Nat. Biotechnol., 30 (2012),pp. 777-782
    [95] Rappe, M.S., Giovannoni, S.J. The uncultured microbial majority Annu. Rev. Microbiol., 57 (2003),pp. 369-394
    [96] Ren, S., Peng, Z., Mao, J.H. et al. RNA-seq analysis of prostate cancer in the Chinese population identifies recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative splicings Cell Res., 22 (2012),pp. 806-821
    [97] Roy, R.S., Price, D.C., Schliep, A. et al. Single cell genome analysis of an uncultured heterotrophic stramenopile Sci. Rep., 4 (2014)
    [98] Saliba, A.E., Westermann, A.J., Gorski, S.A. et al. Single-cell RNA-seq: advances and future challenges Nucleic Acids Res., 42 (2014),pp. 8845-8860
    [99] Sanders, S.J., Murtha, M.T., Gupta, A.R. et al. Nature, 485 (2012),pp. 237-241
    [100] Sasagawa, Y., Nikaido, I., Hayashi, T. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity Genome Biol., 14 (2013),p. R31
    [101] Schadt, E.E., Banerjee, O., Fang, G. et al. Modeling kinetic rate variation in third generation DNA sequencing data to detect putative modifications to DNA bases Genome Res., 23 (2013),pp. 129-141
    [102] Schadt, E.E., Turner, S., Kasarskis, A. A window into third-generation sequencing Hum. Mol. Genet., 19 (2010),pp. R227-R240
    [103] Schatz, D.G., Swanson, P.C. V(D)J recombination: mechanisms of initiation Annu. Rev. Genet., 45 (2011),pp. 167-202
    [104] Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
    [105] Shalek, A.K., Satija, R., Adiconis, X. et al. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells Nature, 498 (2013),pp. 236-240
    [106] Shalek, A.K., Satija, R., Shuga, J. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation Nature, 510 (2014),pp. 363-369
    [107] Shankaranarayanan, P., Mendoza-Parra, M.A., Walia, M. et al. Single-tube linear DNA amplification (LinDA) for robust ChIP-seq Nat. Methods, 8 (2011),pp. 565-567
    [108] Shapiro, E., Biezuner, T., Linnarsson, S. Single-cell sequencing-based technologies will revolutionize whole-organism science Nat. Rev. Genet., 14 (2013),pp. 618-630
    [109] Shiroguchi, K., Jia, T.Z., Sims, P.A. et al. Digital RNA sequencing minimizes sequence-dependent bias and amplification noise with optimized single-molecule barcodes Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 1347-1352
    [110] Siebert, P.D., Chenchik, A., Kellogg, D.E. et al. An improved PCR method for walking in uncloned genomic DNA Nucleic Acids Res., 23 (1995),pp. 1087-1088
    [111] Simmonds, A.J., dos Santos, G., Livne-Bar, I. et al. Apical localization of wingless transcripts is required for wingless signaling Cell, 105 (2001),pp. 197-207
    [112] Smagulova, F., Gregoretti, I.V., Brick, K. et al. Genome-wide analysis reveals novel molecular features of mouse recombination hotspots Nature, 472 (2011),pp. 375-378
    [113] Smallwood, S.A., Lee, H.J., Angermueller, C. et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity Nat. Methods, 11 (2014),pp. 817-820
    [114] Spits, C., Le Caignec, C., De Rycke, M. et al. Whole-genome multiple displacement amplification from single cells Nat. Protoc., 1 (2006),pp. 1965-1970
    [115] Stein, R., Razin, A., Cedar, H. Proc. Natl. Acad. Sci. USA, 79 (1982),pp. 3418-3422
    [116] Sultan, M., Schulz, M.H., Richard, H. et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome Science, 321 (2008),pp. 956-960
    [117] Szyf, M. DNA methylation, behavior and early life adversity J. Genet. Genomics, 40 (2013),pp. 331-338
    [118] Takizawa, P.A., Sil, A., Swedlow, J.R. et al. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast Nature, 389 (1997),pp. 90-93
    [119] Tang, F., Barbacioru, C., Nordman, E. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell Nat. Protoc., 5 (2010),pp. 516-535
    [120] Tang, F., Barbacioru, C., Wang, Y. et al. mRNA-Seq whole-transcriptome analysis of a single cell Nat. Methods, 6 (2009),pp. 377-382
    [121] Taniguchi, K., Kajiyama, T., Kambara, H. Quantitative analysis of gene expression in a single cell by qPCR Nat. Methods, 6 (2009),pp. 503-506
    [122] Telenius, H., Carter, N.P., Bebb, C.E. et al. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer Genomics, 13 (1992),pp. 718-725
    [123] Treutlein, B., Brownfield, D.G., Wu, A.R. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq Nature, 509 (2014),pp. 371-375
    [124] Troutt, A.B., McHeyzer-Williams, M.G., Pulendran, B. et al. Ligation-anchored PCR: a simple amplification technique with single-sided specificity Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 9823-9825
    [125] van Arensbergen, J., Garcia-Hurtado, J., Moran, I. et al. Derepression of polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program Genome Res., 20 (2010),pp. 722-732
    [126] Vester, B., Wengel, J. LNA (Locked nucleic acid): high-affinity targeting of complementary RNA and DNA Biochemistry, 43 (2004),pp. 13233-13241
    [127] Walsh, C.P., Chaillet, J.R., Bestor, T.H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation Nat. Genet., 20 (1998),pp. 116-117
    [128] Walters, E.M., Clark, S.G., Beebe, D.J. et al. Mammalian embryo culture in a microfluidic device Methods Mol. Biol., 254 (2004),pp. 375-382
    [129] Wang, J., Fan, H.C., Behr, B. et al. Cell, 150 (2012),pp. 402-412
    [130] Wang, Y., Wang, Y., Liu, Q. et al. Comparative RNA-seq analysis reveals potential mechanisms mediating the conversion to androgen independence in an LNCaP progression cell model Cancer Lett., 342 (2014),pp. 130-138
    [131] Wang, Y., Waters, J., Leung, M.L. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing Nature, 512 (2014),pp. 155-160
    [132] Xu, X., Hou, Y., Yin, X. et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor Cell, 148 (2012),pp. 886-895
    [133] Xu, Y., Wu, F., Tan, L. et al. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells Mol. Cell, 42 (2011),pp. 451-464
    [134] Xue, Z.G., Huang, K., Cai, C.C. et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing Nature, 500 (2013),pp. 593-597
    [135] Yamaguchi, S., Hong, K., Liu, R. et al. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming Cell Res., 23 (2013),pp. 329-339
    [136] Yan, L., Yang, M., Guo, H. et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells Nat. Struct. Mol. Biol., 20 (2013),pp. 1131-1139
    [137] Yang, H., Liu, Y., Bai, F. et al. Oncogene, 32 (2013),pp. 663-669
    [138] Yoon, H.S., Price, D.C., Stepanauskas, R. et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists Science, 332 (2011),pp. 714-717
    [139] Yu, M., Hon, G.C., Szulwach, K.E. et al. Tet-assisted bisulfite sequencing of 5-hydroxymethylcytosine Nat. Protoc., 7 (2012),pp. 2159-2170
    [140] Yu, M., Hon, G.C., Szulwach, K.E. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome Cell, 149 (2012),pp. 1368-1380
    [141] Zhang, K., Martiny, A.C., Reppas, N.B. et al. Sequencing genomes from single cells by polymerase cloning Nat. Biotechnol., 24 (2006),pp. 680-686
    [142] Zhang, L., Cui, X., Schmitt, K. et al. Whole genome amplification from a single cell: implications for genetic analysis Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 5847-5851
    [143] Zhu, Y.Y., Machleder, E.M., Chenchik, A. et al. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction Biotechniques, 30 (2001),pp. 892-897
    [144] Zong, C., Lu, S., Chapman, A.R. et al. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell Science, 338 (2012),pp. 1622-1626
  • 加载中
计量
  • 文章访问数:  118
  • HTML全文浏览量:  41
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-08
  • 录用日期:  2014-09-16
  • 修回日期:  2014-09-01
  • 网络出版日期:  2014-10-18
  • 刊出日期:  2014-10-20

目录

    /

    返回文章
    返回