留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation

Carson M. Andorf Mykhailo Kopylov Drena Dobbs Karen E. Koch M. Elizabeth Stroupe Carolyn J. Lawrence Hank W. Bass

Carson M. Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E. Koch, M. Elizabeth Stroupe, Carolyn J. Lawrence, Hank W. Bass. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation[J]. Journal of Genetics and Genomics, 2014, 41(12): 627-647. doi: 10.1016/j.jgg.2014.10.004
Citation: Carson M. Andorf, Mykhailo Kopylov, Drena Dobbs, Karen E. Koch, M. Elizabeth Stroupe, Carolyn J. Lawrence, Hank W. Bass. G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation[J]. Journal of Genetics and Genomics, 2014, 41(12): 627-647. doi: 10.1016/j.jgg.2014.10.004

doi: 10.1016/j.jgg.2014.10.004

G-Quadruplex (G4) Motifs in the Maize (Zea mays L.) Genome Are Enriched at Specific Locations in Thousands of Genes Coupled to Energy Status, Hypoxia, Low Sugar, and Nutrient Deprivation

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Armanios, M., Blackburn, E.H. The telomere syndromes Nat. Rev. Genet., 13 (2012),pp. 693-704
    [2] Bailey-Serres, J., Fukao, T., Gibbs, D.J. et al. Making sense of low oxygen sensing Trends Plant Sci., 17 (2012),pp. 129-138
    [3] Bailey-Serres, J., Lee, S.C., Brinton, E. Waterproofing crops: effective flooding survival strategies Plant Physiol., 160 (2012),pp. 1698-1709
    [4] Bailey-Serres, J., Voesenek, L.A. Flooding stress: acclimations and genetic diversity Ann. Rev. Plant Biol., 59 (2008),pp. 313-339
    [5] Beckett, J., Burns, J., Broxson, C. et al. Spontaneous DNA lesions modulate DNA structural transitions occurring at nuclease hypersensitive element III(1) of the human c-myc proto-oncogene Biochemistry, 51 (2012),pp. 5257-5268
    [6] Bennetzen, J.L., Hake, S.C.
    [7] Biffi, G., Tannahill, D., McCafferty, J. et al. Quantitative visualization of DNA G-quadruplex structures in human cells Nat. Chem., 5 (2013),pp. 182-186
    [8] Bihmidine, S., Lin, J., Stone, J.M. et al. Planta, 237 (2013),pp. 55-64
    [9] Blackburn, E.H., Epel, E.S. Telomeres and adversity: too toxic to ignore Nature, 490 (2012),pp. 169-171
    [10] Blackburn, E.H., Greider, C.W., Szostak, J.W. Telomeres and telomerase: the path from maize, tetrahymena and yeast to human cancer and aging Nat. Med., 12 (2006),pp. 1133-1138
    [11] Bochman, M.L., Paeschke, K., Zakian, V.A. DNA secondary structures: stability and function of G-quadruplex structures Nat. Rev. Genet., 13 (2012),pp. 770-780
    [12] Bouche, N., Fromm, H. GABA in plants: just a metabolite? Trends Plant Sci., 9 (2004),pp. 110-115
    [13] Bourdoncle, A., Estevez Torres, A., Gosse, C. et al. Quadruplex-based molecular beacons as tunable DNA probes J. Am. Chem. Soc., 128 (2006),pp. 11094-11105
    [14] Breit, J.F., Ault-Ziel, K., Al-Mehdi, A.B. et al. Nuclear protein-induced bending and flexing of the hypoxic response element of the rat vascular endothelial growth factor promoter FASEB J., 22 (2008),pp. 19-29
    [15] Brooks, T.A., Hurley, L.H. The role of supercoiling in transcriptional control of myc and its importance in molecular therapeutics Nat. Rev. Cancer, 9 (2009),pp. 849-861
    [16] Brooks, T.A., Hurley, L.H. Targeting MYC expression through G-quadruplexes Genes Cancer, 1 (2010),pp. 641-649
    [17] Brooks, T.A., Kendrick, S., Hurley, L. Making sense of G-quadruplex and i-motif functions in oncogene promoters FEBS J., 277 (2010),pp. 3459-3469
    [18] Brown, A.N., Lauter, N., Vera, D.L. et al. G3: Genes, Genomes, Genetics, 1 (2011),pp. 437-450
    [19] Brown, R.V., Danford, F.L., Gokhale, V. et al. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex J. Biol. Chem., 286 (2011),pp. 41018-41027
    [20] Bugaut, A., Balasubramanian, S. A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes Biochemistry, 47 (2008),pp. 689-697
    [21] Burge, S., Parkinson, G.N., Hazel, P. et al. Quadruplex DNA: sequence, topology and structure Nucleic Acids Res., 34 (2006),pp. 5402-5415
    [22] Cahoon, L.A., Seifert, H.S. PLoS Pathog., 9 (2013),p. e1003074
    [23] Caldana, C., Li, Y., Leisse, A. et al. Plant J., 73 (2013),pp. 897-909
    [24] Capra, J.A., Paeschke, K., Singh, M. et al. PLoS Comput. Biol., 6 (2010),p. e1000861
    [25] Chen, Y., Yang, D. Sequence, stability, and structure of G-quadruplexes and their interactions with drugs Curr. Protoc. Nucleic Acid Chem. (2012)
    [26] Chinnapen, D.J., Sen, D. A deoxyribozyme that harnesses light to repair thymine dimers in DNA Proc. Natl. Acad. Sci. USA, 101 (2004),pp. 65-69
    [27] Clark, D.W., Phang, T., Edwards, M.G. et al. Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription Free Radic. Biol. Med., 53 (2012),pp. 51-59
    [28] Cogoi, S., Xodo, L.E. G-quadruplex formation within the promoter of the KRAS proto-oncogene and its effect on transcription Nucleic Acids Res., 34 (2006),pp. 2536-2549
    [29] Davis, G.L., McMullen, M.D., Baysdorfer, C. et al. A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map Genetics, 152 (1999),pp. 1137-1172
    [30] De Armond, R., Wood, S., Sun, D. et al. Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1alpha promoter Biochemistry, 44 (2005),pp. 16341-16350
    [31] Dexheimer, T.S., Sun, D., Hurley, L.H. Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 promoter J. Am. Chem. Soc., 128 (2006),pp. 5404-5415
    [32] Dobrenel, T., Marchive, C., Azzopardi, M. et al. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front. Plant Sci., 4 (2013),p. 93
    [33] Du, Z., Zhao, Y., Li, N. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription Genome Res., 18 (2008),pp. 233-241
    [34] Du, Z., Zhao, Y., Li, N. Genome-wide colonization of gene regulatory elements by G4 DNA motifs Nucleic Acids Res., 37 (2009),pp. 6784-6798
    [35] Eddy, J., Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome Nucleic Acids Res., 34 (2006),pp. 3887-3896
    [36] Eddy, J., Maizels, N. Conserved elements with potential to form polymorphic G-quadruplex structures in the first intron of human genes Nucleic Acids Res., 36 (2008),pp. 1321-1333
    [37] Eddy, J., Vallur, A.C., Varma, S. et al. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes Nucleic Acids Res., 39 (2011),pp. 4975-4983
    [38] Epstein, A.C., Gleadle, J.M., McNeill, L.A. et al. Cell, 107 (2001),pp. 43-54
    [39] Ferjani, A., Segami, S., Horiguchi, G. et al. Plant Cell, 23 (2011),pp. 2895-2908
    [40] Fernando, H., Reszka, A.P., Huppert, J. et al. A conserved quadruplex motif located in a transcription activation site of the human c-kit oncogene Biochemistry, 45 (2006),pp. 7854-7860
    [41] Foyer, C.H., Noctor, G. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses Plant Cell, 17 (2005),pp. 1866-1875
    [42] Foyer, C.H., Noctor, G. Ascorbate and glutathione: the heart of the redox hub Plant Physiol., 155 (2011),pp. 2-18
    [43] Fukao, T., Yeung, E., Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice Plant Cell, 23 (2011),pp. 412-427
    [44] Gibbs, D.J., Lee, S.C., Isa, N.M. et al. Homeostatic response to hypoxia is regulated by the N-end rule pathway in plants Nature, 479 (2011),pp. 415-418
    [45] Goodstein, D.M., Shu, S., Howson, R. et al. Phytozome: a comparative platform for green plant genomics Nucleic Acids Res., 40 (2012),pp. D1178-D1186
    [46] Gray, J., Bevan, M., Brutnell, T. et al. A recommendation for naming transcription factor proteins in the grasses Plant Physiol., 149 (2009),pp. 4-6
    [47] Guo, K., Gokhale, V., Hurley, L.H. et al. Intramolecularly folded G-quadruplex and i-motif structures in the proximal promoter of the vascular endothelial growth factor gene Nucleic Acids Res., 36 (2008),pp. 4598-4608
    [48] Guo, K., Pourpak, A., Beetz-Rogers, K. et al. J. Am. Chem. Soc., 129 (2007),pp. 10220-10228
    [49] Halder, K., Halder, R., Chowdhury, S. Genome-wide analysis predicts DNA structural motifs as nucleosome exclusion signals Mol. Biosyst, 5 (2009),pp. 1703-1712
    [50] Hazel, P., Huppert, J., Balasubramanian, S. et al. Loop-length-dependent folding of G-quadruplexes J. Am. Chem. Soc., 126 (2004),pp. 16405-16415
    [51] Henderson, A., Wu, Y., Huang, Y.C. et al. Detection of G-quadruplex DNA in mammalian cells Nucleic Acids Res., 42 (2014),pp. 860-869
    [52] Hershman, S.G., Chen, Q., Lee, J.Y. et al. Nucleic Acids Res., 36 (2008),pp. 144-156
    [53] Huber, M.D., Duquette, M.L., Shiels, J.C. et al. A conserved G4 DNA binding domain in RecQ family helicases J. Mol. Biol., 358 (2006),pp. 1071-1080
    [54] Huber, S.C., Akazawa, T. A novel sucrose synthase pathway for sucrose degradation in cultured sycamore cells Plant Physiol., 81 (1986),pp. 1008-1013
    [55] Huppert, J.L. Four-stranded DNA: cancer, gene regulation and drug development Philos. Trans. A. Math. Phys. Eng. Sci., 365 (2007),pp. 2969-2984
    [56] Huppert, J.L. Structure, location and interactions of G-quadruplexes FEBS J., 277 (2010),pp. 3452-3458
    [57] Huppert, J.L., Balasubramanian, S. Prevalence of quadruplexes in the human genome Nucleic Acids Res., 33 (2005),pp. 2908-2916
    [58] Ivan, M., Kondo, K., Yang, H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing Science, 292 (2001),pp. 464-468
    [59] Jaakkola, P., Mole, D.R., Tian, Y.M. et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation Science, 292 (2001),pp. 468-472
    [60] Jakoby, M., Weisshaar, B., Droge-Laser, W. et al. Trends Plant Sci., 7 (2002),pp. 106-111
    [61] Juranek, S.A., Paeschke, K. Cell cycle regulation of G-quadruplex DNA structures at telomeres Curr. Pharm. Des., 18 (2012),pp. 1867-1872
    [62] Karp, P.D., Paley, S.M., Krummenacker, M. et al. Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology Brief. Bioinform., 11 (2010),pp. 40-79
    [63] Kelliher, T., Walbot, V. Hypoxia triggers meiotic fate acquisition in maize Science, 337 (2012),pp. 345-348
    [64] Keunen, E., Peshev, D., Vangronsveld, J. et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept Plant Cell Environ., 36 (2013),pp. 242-1255
    [65] Kikin, O., D'Antonio, L., Bagga, P.S. QGRS mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences Nucleic Acids Res., 34 (2006),pp. W676-W682
    [66] Koch, K.E. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development Curr. Opin. Plant Biol., 7 (2004),pp. 235-246
    [67] Koch, K.E. Carbohydrate-modulated gene expression in plants Annu. Rev. Plant Physiol. Plant Mol. Biol., 47 (1996),pp. 509-540
    [68] Koch, K.E., Ying, Z., Wu, Y. et al. Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism J. Exp. Bot., 51 (2000),pp. 417-427
    [69] Lam, E.Y., Beraldi, D., Tannahill, D. et al. G-quadruplex structures are stable and detectable in human genomic DNA Nat. Commun., 4 (2013),p. 1796
    [70] Laurie, D.A., Bennett, M.D. Heredity, 55 (1985),pp. 307-313
    [71] Lexa, M., Kejnovsky, E., Steflova, P. et al. Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons Nucleic Acids Res., 42 (2014),pp. 968-978
    [72] Licausi, F., Kosmacz, M., Weits, D.A. et al. Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization Nature, 479 (2011),pp. 419-422
    [73] Loescher, W.H. Physiology and metabolism of sugar alcohols in higher plants Physiol. Plant., 70 (1987),pp. 553-557
    [74] Maizels, N. Dynamic roles for G4 DNA in the biology of eukaryotic cells Nat. Struct. Mol. Biol., 13 (2006),pp. 1055-1059
    [75] Maizels, N., Gray, L.T. The G4 genome PLoS Genet., 9 (2013),p. e1003468
    [76] Mani, P., Yadav, V.K., Das, S.K. et al. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination PLoS ONE, 4 (2009),p. e4399
    [77] Marchler-Bauer, A., Zheng, C., Chitsaz, F. et al. CDD: conserved domains and protein three-dimensional structure Nucleic Acids Res., 41 (2013),pp. D348-D352
    [78] Menendez, C., Frees, S., Bagga, P.S. QGRS-H predictor: a web server for predicting homologous quadruplex forming G-rich sequence motifs in nucleotide sequences Nucleic Acids Res., 40 (2012),pp. W96-W103
    [79] Milanesi, L., D'Angelo, D., Rogozin, I.B. GeneBuilder: interactive in silico prediction of gene structure Bioinformatics, 15 (1999),pp. 612-621
    [80] Monaco, M.K., Sen, T.Z., Dharmawardhana, P.D. et al. Maize metabolic network construction and transcriptome analysis Plant Genome, 6 (2013)
    [81] Mullen, M.A., Olson, K.J., Dallaire, P. et al. Nucleic Acids Res., 38 (2010),pp. 8149-8163
    [82] Nakano, T., Suzuki, K., Fujimura, T. et al. Plant Physiol., 140 (2006),pp. 411-432
    [83] Nishizawa, A., Yabuta, Y., Shigeoka, S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage Plant Physiol., 147 (2008),pp. 1251-1263
    [84] Nussbaumer, T., Martis, M.M., Roessner, S.K. et al. MIPS PlantsDB: a database framework for comparative plant genome research Nucleic Acids Res., 41 (2013),pp. D1144-D1151
    [85] Palumbo, S.L., Ebbinghaus, S.W., Hurley, L.H. J. Am. Chem. Soc., 131 (2009),pp. 10878-10891
    [86] Palumbo, S.L., Memmott, R.M., Uribe, D.J. et al. A novel G-quadruplex-forming GGA repeat region in the c-myb promoter is a critical regulator of promoter activity Nucleic Acids Res., 36 (2008),pp. 1755-1769
    [87] Pontier, D.B., Kruisselbrink, E., Guryev, V. et al. Isolation of deletion alleles by G4 DNA-induced mutagenesis Nat. Meth., 6 (2009),pp. 655-657
    [88] Punta, M., Coggill, P.C., Eberhardt, R.Y. et al. The PFAM protein families database. Nucleic Acids Res. (2012),pp. D290-D301
    [89] Qin, Y., Fortin, J.S., Tye, D. et al. Molecular cloning of the human platelet-derived growth factor receptor beta (PDGFR-beta) promoter and drug targeting of the G-quadruplex-forming region to repress pdgfr-beta expression Biochemistry, 49 (2010),pp. 4208-4219
    [90] Qin, Y., Hurley, L.H. Structures, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions Biochimie, 90 (2008),pp. 1149-1171
    [91] Rawal, P., Kummarasetti, V.B., Ravindran, J. et al. Genome Res., 16 (2006),pp. 644-655
    [92] Robaglia, C., Thomas, M., Meyer, C. Sensing nutrient and energy status by SnRK1 and TOR kinases Curr. Opin. Plant Biol., 15 (2012),pp. 301-307
    [93] Rolletschek, H., Koch, K., Wobus, U. et al. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo Plant J., 42 (2005),pp. 69-83
    [94] Rolletschek, H., Melkus, G., Grafahrend-Belau, E. et al. Combined noninvasive imaging and modeling approaches reveal metabolic compartmentation in the barley endosperm Plant Cell, 23 (2011),pp. 3041-3054
    [95] Ruan, Y.L., Jin, Y., Yang, Y.J. et al. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat Mol. Plant, 3 (2010),pp. 942-955
    [96] Ruchko, M.V., Gorodnya, O.M., Pastukh, V.M. et al. Hypoxia-induced oxidative base modifications in the VEGF hypoxia-response element are associated with transcriptionally active nucleosomes Free Radic. Biol. Med., 46 (2009),pp. 352-359
    [97] Sachs, M.M., Freeling, M., Okimoto, R. The anaerobic proteins of maize Cell, 20 (1980),pp. 761-767
    [98] Salamov, A.A., Solovyev, V.V. Genome Res., 10 (2000),pp. 516-522
    [99] SanMiguel, P., Gaut, B.S., Tikhonov, A. et al. The paleontology of intergene retrotransposons of maize Nat. Genet., 20 (1998),pp. 43-45
    [100] Schnable, J.C., Freeling, M., Lyons, E. Genome-wide analysis of syntenic gene deletion in the grasses Genome Biol. Evol., 4 (2012),pp. 265-277
    [101] Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [102] Sen, D., Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis Nature, 334 (1988),pp. 364-366
    [103] Sen, T.Z., Andorf, C.M., Schaeffer, M.L. et al. MaizeGDB becomes ‘sequence-centric’ Database (Oxford), 2009 (2009),p. bap020
    [104] Shen, B., Hohmann, S., Jensen, R.G. et al. Roles of sugar alcohols in osmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast Plant Physiol., 121 (1999),pp. 45-52
    [105] Sickler, C.M., Edwards, G.E., Kiirats, O. et al. Funct. Plant Biol., 34 (2007),pp. 382-391
    [106] Siddiqui-Jain, A., Grand, C.L., Bearss, D.J. et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 11593-11598
    [107] Simonsson, T. G-quadruplex DNA structures–variations on a theme Biol. Chem., 382 (2001),pp. 621-628
    [108] Stegle, O., Payet, L., Mergny, J.L. et al. Predicting and understanding the stability of G-quadruplexes Bioinformatics, 25 (2009),pp. i374-382
    [109] Sulpice, R., Trenkamp, S., Steinfath, M. et al. Plant Cell, 22 (2010),pp. 2872-2893
    [110] Sun, D., Hurley, L.H. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay Methods Mol. Biol., 608 (2010),pp. 65-79
    [111] Sundquist, W.I., Klug, A. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops Nature, 342 (1989),pp. 825-829
    [112] Takahashi, H., Nakagawa, A., Kojima, S. et al. Discovery of novel rules for G-quadruplex-forming sequences in plants by using bioinformatics methods J. Biosci. Bioeng., 114 (2012),pp. 570-575
    [113] Thimm, O., Blasing, O., Gibon, Y. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes Plant J., 37 (2004),pp. 914-939
    [114] Tiessen, A., Padilla-Chacon, D. Subcellular compartmentation of sugar signaling: links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning Front. Plant Sci., 3 (2012),p. 306
    [115] Todd, A.K., Johnston, M., Neidle, S. Highly prevalent putative quadruplex sequence motifs in human DNA Nucleic Acids Res., 33 (2005),pp. 2901-2907
    [116] Todd, A.K., Neidle, S. Mapping the sequences of potential guanine quadruplex motifs Nucleic Acids Res., 39 (2011),pp. 4917-4927
    [117] Valluru, R., Van den Ende, W. Myo-inositol and beyond–emerging networks under stress Plant Sci., 181 (2011),pp. 387-400
    [118] Verma, A., Halder, K., Halder, R. et al. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species J. Med. Chem., 51 (2008),pp. 5641-5649
    [119] Verma, A., Yadav, V.K., Basundra, R. et al. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells Nucleic Acids Res., 37 (2009),pp. 4194-4204
    [120] Weng, H.Y., Huang, H.L., Zhao, P.P. et al. Translational repression of cyclin D3 by a stable G-quadruplex in its 5′ UTR: implications for cell cycle regulation RNA Biol., 9 (2012),pp. 1099-1109
    [121] Williamson, J.R., Raghuraman, M.K., Cech, T.R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model Cell, 59 (1989),pp. 871-880
    [122] Wong, H.M., Stegle, O., Rodgers, S. et al. A toolbox for predicting G-quadruplex formation and stability J. Nucleic Acids, 2010 (2010)
    [123] Wouters, A., Boeckx, C., Vermorken, J.B. et al. The intriguing interplay between therapies targeting the epidermal growth factor receptor, the hypoxic microenvironment and hypoxia-inducible factors Curr. Pharm. Des., 19 (2013),pp. 907-917
    [124] Xiong, Y., McCormack, M., Li, L. et al. Glucose-TOR signalling reprograms the transcriptome and activates meristems Nature, 496 (2013),pp. 181-186
    [125] Xu, X.M., Lin, H., Maple, J. et al. The Arabidopsis DJ-1a protein confers stress protection through cytosolic SOD activation J. Cell Sci., 123 (2010),pp. 1644-1651
    [126] Xu, Y., Sugiyama, H. Formation of the G-quadruplex and i-motif structures in retinoblastoma susceptibility genes (Rb) Nucleic Acids Res., 34 (2006),pp. 949-954
    [127] Yadav, V.K., Abraham, J.K., Mani, P. et al. QuadBase: genome-wide database of G4 DNA–occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes Nucleic Acids Res., 36 (2008),pp. D381-D385
    [128] Yang, D., Okamoto, K. Structural insights into G-quadruplexes: towards new anticancer drugs Future Med. Chem., 2 (2010),pp. 619-646
    [129] Yatabe, N., Kyo, S., Maida, Y. et al. HIF-1-mediated activation of telomerase in cervical cancer cells Oncogene, 23 (2004),pp. 3708-3715
    [130] Youens-Clark, K., Buckler, E., Casstevens, T. et al. Gramene database in 2010: updates and extensions Nucleic Acids Res., 39 (2011),pp. D1085-D1094
    [131] Yu, R.M., Chen, E.X., Kong, R.Y. et al. BMC Mol. Biol., 7 (2006),p. 27
    [132] Yuan, L., Tian, T., Chen, Y. et al. Existence of G-quadruplex structures in promoter region of oncogenes confirmed by G-quadruplex DNA cross-linking strategy Sci. Rep., 3 (2013),p. 1811
    [133] Zeng, Y., Wu, Y., Avigne, W.T. et al. Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses Plant Physiol., 116 (1998),pp. 1573-1583
  • 加载中
计量
  • 文章访问数:  134
  • HTML全文浏览量:  45
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-23
  • 录用日期:  2014-10-24
  • 修回日期:  2014-10-16
  • 网络出版日期:  2014-11-04
  • 刊出日期:  2014-12-20

目录

    /

    返回文章
    返回