留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Genome-Wide Linkage and Positional Association Analyses Identify Associations of Novel AFF3 and NTM Genes with Triglycerides: The GenSalt Study

Changwei Li Lydia A.L. Bazzano Dabeeru C. Rao James E. Hixson Jiang He Dongfeng Gu Charles C. Gu Lawrence C. Shimmin Cashell E. Jaquish Karen Schwander De-Pei Liu Jianfeng Huang Fanghong Lu Jie Cao Shen Chong Xiangfeng Lu Tanika N. Kelly

Changwei Li, Lydia A.L. Bazzano, Dabeeru C. Rao, James E. Hixson, Jiang He, Dongfeng Gu, Charles C. Gu, Lawrence C. Shimmin, Cashell E. Jaquish, Karen Schwander, De-Pei Liu, Jianfeng Huang, Fanghong Lu, Jie Cao, Shen Chong, Xiangfeng Lu, Tanika N. Kelly. Genome-Wide Linkage and Positional Association Analyses Identify Associations of Novel AFF3 and NTM Genes with Triglycerides: The GenSalt Study[J]. Journal of Genetics and Genomics, 2015, 42(3): 107-117. doi: 10.1016/j.jgg.2015.02.003
Citation: Changwei Li, Lydia A.L. Bazzano, Dabeeru C. Rao, James E. Hixson, Jiang He, Dongfeng Gu, Charles C. Gu, Lawrence C. Shimmin, Cashell E. Jaquish, Karen Schwander, De-Pei Liu, Jianfeng Huang, Fanghong Lu, Jie Cao, Shen Chong, Xiangfeng Lu, Tanika N. Kelly. Genome-Wide Linkage and Positional Association Analyses Identify Associations of Novel AFF3 and NTM Genes with Triglycerides: The GenSalt Study[J]. Journal of Genetics and Genomics, 2015, 42(3): 107-117. doi: 10.1016/j.jgg.2015.02.003

doi: 10.1016/j.jgg.2015.02.003

Genome-Wide Linkage and Positional Association Analyses Identify Associations of Novel AFF3 and NTM Genes with Triglycerides: The GenSalt Study

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Abecasis, G.R., Cherny, S.S., Cookson, W.O. et al. GRR: graphical representation of relationship errors Bioinformatics, 17 (2001),pp. 742-743
    [2] Allain, C.C., Poon, L.S., Chan, C.S. et al. Enzymatic determination of total serum cholesterol Clin. Chem., 20 (1974),pp. 470-475
    [3] Almasy, L., Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees Am. J. Hum. Genet., 62 (1998),pp. 1198-1211
    [4] Aulchenko, Y.S., Ripatti, S., Lindqvist, I. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts Nat. Genet., 41 (2009),pp. 47-55
    [5] Barrett, J.C., Clayton, D.G., Concannon, P. et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes Nat. Genet., 41 (2009),pp. 703-707
    [6] Barton, A., Eyre, S., Ke, X. et al. Identification of AF4/FMR2 family, member 3 (AFF3) as a novel rheumatoid arthritis susceptibility locus and confirmation of two further pan-autoimmune susceptibility genes Hum. Mol. Genet., 18 (2009),pp. 2518-2522
    [7] Bosse, Y., Chagnon, Y.C., Despres, J.P. et al. Genome-wide linkage scan reveals multiple susceptibility loci influencing lipid and lipoprotein levels in the Quebec Family Study J. Lipid Res., 45 (2004),pp. 419-426
    [8] Danai, L.V., Guilherme, A., Guntur, K.V. et al. Map4k4 suppresses Srebp-1 and adipocyte lipogenesis independent of JNK signaling J. Lipid Res., 54 (2013),pp. 2697-2707
    [9] Di Angelantonio, E., Sarwar, N., Perry, P. et al. Major lipids, apolipoproteins, and risk of vascular disease JAMA, 302 (2009),pp. 1993-2000
    [10] Flicek, P., Amode, M.R., Barrell, D. et al. Ensembl 2014 Nucleic Acids Res., 42 (2014),pp. D749-D755
    [11] Friedewald, W.T., Levy, R.I., Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge Clin. Chem., 18 (1972),pp. 499-502
    [12] Friedlander, Y., Austin, M.A., Newman, B. et al. Heritability of longitudinal changes in coronary-heart-disease risk factors in women twins Am. J. Hum. Genet., 60 (1997),pp. 1502-1512
    [13] Group, G.C.R. GenSalt: rationale, design, methods and baseline characteristics of study participants J. Hum. Hypertens., 21 (2007),pp. 639-646
    [14] Guy, J., Ogden, L., Wadwa, R.P. et al. Lipid and lipoprotein profiles in youth with and without type 1 diabetes: the SEARCH for Diabetes in Youth case-control study Diabetes Care, 32 (2009),pp. 416-420
    [15] He, J., Gu, D., Wu, X. et al. Major causes of death among men and women in China N. Engl. J. Med., 353 (2005),pp. 1124-1134
    [16] Hinds, D., Risch, N.
    [17] Hokanson, J.E., Austin, M.A. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies J. Cardiovasc. Risk, 3 (1996),pp. 213-219
    [18] Huxley, R.R., Barzi, F., Lam, T.H. et al. Isolated low levels of high-density lipoprotein cholesterol are associated with an increased risk of coronary heart disease: an individual participant data meta-analysis of 23 studies in the Asia-Pacific region Circulation, 124 (2011),pp. 2056-2064
    [19] Kathiresan, S., Melander, O., Guiducci, C. et al.
    [20] Kathiresan, S., Willer, C.J., Peloso, G.M. et al. Common variants at 30 loci contribute to polygenic dyslipidemia Nat. Genet., 41 (2009),pp. 56-65
    [21] Kim, Y.J., Go, M.J., Hu, C. et al. Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits Nat. Genet., 43 (2011),pp. 990-995
    [22] Kooner, J.S., Chambers, J.C., Aguilar-Salinas, C.A. et al. Genome-wide scan identifies variation in MLXIPL associated with plasma triglycerides Nat. Genet., 40 (2008),pp. 149-151
    [23] LaRosa, J.C., He, J., Vupputuri, S.
    [24] Li, C., Yang, X., He, J. et al. PLoS One, 9 (2014),p. e98432
    [25] Liu, J., Rosner, M.H. Lipid abnormalities associated with end-stage renal disease Semin. Dial., 19 (2006),pp. 32-40
    [26] Lozano, R., Naghavi, M., Foreman, K. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010 Lancet, 380 (2013),pp. 2095-2128
    [27] Luo, B.F., Du, L., Li, J.X. et al. Heritability of metabolic syndrome traits among healthy younger adults: a population based study in China J. Med. Genet., 47 (2010),pp. 415-420
    [28] Luukkonen, T.M., Pöyhönen, M., Palotie, A. et al. A balanced translocation truncates Neurotrimin in a family with intracranial and thoracic aortic aneurysm J. Med. Genet., 49 (2012),pp. 621-629
    [29] Ma, L., Clark, A.G., Keinan, A. Gene-based testing of interactions in association studies of quantitative traits PLoS Genet., 9 (2013),p. e1003321
    [30] Mailman, M.D., Feolo, M., Jin, Y. et al. The NCBI dbGaP database of genotypes and phenotypes Nat. Genet., 39 (2007),pp. 1181-1186
    [31] Malhotra, A., Wolford, J.K. Analysis of quantitative lipid traits in the genetics of NIDDM (GENNID) study Diabetes, 54 (2005),pp. 3007-3014
    [32] Moschovi, M., Trimis, G., Apostolakou, F. et al. Serum lipid alterations in acute lymphoblastic leukemia of childhood J. Pediatr. Hematol. Oncol., 26 (2004),pp. 289-293
    [33] Murray, C.J.L., Vos, T., Lozano, R. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 Lancet, 380 (2013),pp. 2197-2223
    [34] Nishida, N., Koike, A., Tajima, A. et al. Evaluating the performance of Affymetrix SNP Array 6.0 platform with 400 Japanese individuals BMC Genomics, 9 (2008),p. 431
    [35] O'Connell, J.R., Weeks, D.E. PedCheck: a program for identification of genotype incompatibilities in linkage analysis Am. J. Hum. Genet., 63 (1998),pp. 259-266
    [36] Plant, D., Flynn, E., Mbarek, H. et al. Investigation of potential non-HLA rheumatoid arthritis susceptibility loci in a European cohort increases the evidence for nine markers Ann. Rheum. Dis., 69 (2010),pp. 1548-1553
    [37] Pratt, S.C., Daly, M.J., Kruglyak, L. Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components Am. J. Hum. Genet., 66 (2000),pp. 1153-1157
    [38] Puri, V., Virbasius, J.V., Guilherme, A. et al. RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27 Acta Physiol. (Oxf), 192 (2008),pp. 103-115
    [39] Ramirez, C.M., Dávalos, A., Goedeke, L. et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1 Arterioscler. Thromb. Vasc. Biol., 31 (2011),pp. 2707-2714
    [40] Sandholm, N., Salem, R.M., McKnight, A.J. et al. New susceptibility loci associated with kidney disease in type 1 diabetes PLoS Genet., 8 (2012),p. e1002921
    [41] Saxena, R., Voight, B.F., Lyssenko, V. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels Science, 316 (2007),pp. 1331-1336
    [42] Sheng, X., Yang, J. Truncated product methods for panel unit root tests Oxf. Bull. Econ. Stat., 75 (2013),pp. 624-636
    [43] Steiner, G., Urowitz, M.B. Lipid profiles in patients with rheumatoid arthritis: mechanisms and the impact of treatment Semin. Arthritis Rheum, 38 (2009),pp. 372-381
    [44] Tan, A., Sun, J., Xia, N. et al. A genome-wide association and gene-environment interaction study for serum triglycerides levels in a healthy Chinese male population Hum. Mol. Genet., 21 (2012),pp. 1658-1664
    [45] Teslovich, T.M., Musunuru, K., Smith, A.V. et al. Biological, clinical and population relevance of 95 loci for blood lipids Nature, 466 (2010),pp. 707-713
    [46] von Bergh, A.R., Beverloo, H.B., Rombout, P. et al. Genes Chromosomes Cancer, 35 (2002),pp. 92-96
    [47] Wallace, C., Newhouse, S.J., Braund, P. et al. Genome-wide association study identifies genes for biomarkers of cardiovascular disease: serum urate and dyslipidemia Am. J. Hum. Genet., 82 (2008),pp. 139-149
    [48] Wallace, C., Rotival, M., Cooper, J.D. et al. Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes Hum. Mol. Genet., 21 (2012),pp. 2815-2824
    [49] Waterworth, D.M., Ricketts, S.L., Song, K. et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease Arterioscler. Thromb. Vasc. Biol., 30 (2010),pp. 2264-2276
    [50] Willer, C.J., Sanna, S., Jackson, A.U. et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease Nat. Genet., 40 (2008),pp. 161-169
    [51] Yang, J., Zhu, Y., Cole, S.A. et al. A gene-family analysis of 61 genetic variants in the nicotinic acetylcholine receptor genes for insulin resistance and type 2 diabetes in American Indians Diabetes, 61 (2012),pp. 1888-1894
    [52] Yang, J., Zhu, Y., Lee, E.T. et al. Joint associations of 61 genetic variants in the nicotinic acetylcholine receptor genes with subclinical atherosclerosis in American Indians: a gene-family analysis Circ. Cardiovasc. Genet., 6 (2013),pp. 89-96
    [53] Zhang, S., Liu, X., Necheles, J. et al. Genetic and environmental influences on serum lipid tracking: a population-based, longitudinal Chinese twin study Pediatr. Res., 68 (2010),pp. 316-322
    [54] Zhu, Y., Yang, J., Yeh, F. et al. Joint association of nicotinic acetylcholine receptor variants with abdominal obesity in American Indians: the Strong Heart Family Study PLoS One, 9 (2014),p. e102220
  • 加载中
计量
  • 文章访问数:  64
  • HTML全文浏览量:  26
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-06
  • 录用日期:  2015-02-10
  • 修回日期:  2015-02-06
  • 网络出版日期:  2015-02-17
  • 刊出日期:  2015-03-20

目录

    /

    返回文章
    返回