留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Huifang Guo, Peter German, Shanshan Bai, Sean Barnes, Wei Guo, Xiangjie Qi, Hongxiang Lou, Jiyong Liang, Eric Jonasch, Gordon B. Mills, Zhiyong Ding. The PI3K/AKT Pathway and Renal Cell Carcinoma[J]. Journal of Genetics and Genomics, 2015, 42(7): 343-353. doi: 10.1016/j.jgg.2015.03.003
Citation: Huifang Guo, Peter German, Shanshan Bai, Sean Barnes, Wei Guo, Xiangjie Qi, Hongxiang Lou, Jiyong Liang, Eric Jonasch, Gordon B. Mills, Zhiyong Ding. The PI3K/AKT Pathway and Renal Cell Carcinoma[J]. Journal of Genetics and Genomics, 2015, 42(7): 343-353. doi: 10.1016/j.jgg.2015.03.003

doi: 10.1016/j.jgg.2015.03.003

The PI3K/AKT Pathway and Renal Cell Carcinoma

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Agoulnik, I.U., Hodgson, M.C., Bowden, W.A. et al. INPP4B: the new kid on the PI3K block Oncotarget, 2 (2011),pp. 321-328
    [2] Akbani, R., Ng, P.K.S., Werner, H.M.J. et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas Nat. Commun., 5 (2014),p. 3887
    [3] Alessi, D.R., James, S.R., Downes, C.P. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase B α Curr. Biol., 7 (1997),pp. 261-269
    [4] Andjelkovic, M., Alessi, D.R., Meier, R. et al. Role of translocation in the activation and function of protein kinase B J. Biol. Chem., 272 (1997),pp. 31515-31524
    [5] Auger, K.R., Serunian, L.A., Soltoff, S.P. et al. PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells Cell, 57 (1989),pp. 167-175
    [6] Bernardi, R., Guernah, I., Jin, D. et al. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR Nature, 442 (2006),pp. 779-785
    [7] Bhatt, J.R., Finelli, A. Landmarks in the diagnosis and treatment of renal cell carcinoma Nat. Rev. Urol., 11 (2014),pp. 517-525
    [8] Bozulic, L., Surucu, B., Hynx, D. et al. PKBα/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival Mol. Cell, 30 (2008),pp. 203-213
    [9] Brazil, D.P., Yang, Z.Z., Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts Trends Biochem. Sci., 29 (2004),pp. 233-242
    [10] Brugge, J., Hung, M.-C., Mills, G.B. A new mutational AKTivation in the PI3K Pathway Cancer Cell, 12 (2007),pp. 104-107
    [11] Cai, S.-L., Tee, A.R., Short, J.D. et al. Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning J. Cell Biol., 173 (2006),pp. 279-289
    [12] Campbell, I.G., Russell, S.E., Choong, D.Y. et al. Cancer Res., 64 (2004),pp. 7678-7681
    [13] Carpten, J.D., Faber, A.L., Horn, C. et al. A transforming mutation in the pleckstrin homology domain of AKT1 in cancer Nature, 448 (2007),pp. 439-444
    [14] Cerami, E., Gao, J., Dogrusoz, U. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data Cancer Discov., 2 (2012),pp. 401-404
    [15] Cheng, J.Q., Godwin, A.K., Bellacosa, A. et al. Proc. Natl. Acad. Sci. USA, 89 (1992),pp. 9267-9271
    [16] Cheng, J.Q., Ruggeri, B., Klein, W.M. et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 3636-3641
    [17] Cheung, L.W.T., Hennessy, B.T., Li, J. et al. Cancer Discov., 1 (2011),pp. 170-185
    [18] Cheung, Lydia W.T., Yu, S., Zhang, D. et al. Cancer Cell, 26 (2014),pp. 479-494
    [19] Cho, D. Novel targeting of phosphatidylinositol 3-kinase and mammalian target of rapamycin in renal cell carcinoma Cancer J., 19 (2013),pp. 311-315
    [20] Cohen, M.M. Am. J. Med. Genet. A, 161 (2013),pp. 2931-2937
    [21] Davies, M.A., Stemke-Hale, K., Tellez, C. et al. Br. J. Cancer, 99 (2008),pp. 1265-1268
    [22] Davis, C.F., Ricketts, C.J., Wang, M. et al. The somatic genomic landscape of chromophobe renal cell carcinoma Cancer Cell, 26 (2014),pp. 319-330
    [23] Dawood, M., Mills, G.B., Ding, Z. Shrewd AKT regulation to survive Oncoscience, 1 (2014),pp. 113-114
    [24] Dillon, R.L., Marcotte, R., Hennessy, B.T. et al. Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression Cancer Res., 69 (2009),pp. 5057-5064
    [25] Ding, Z., German, P., Bai, S. et al. Agents that stabilize mutated von Hippel-Lindau (VHL) protein: results of a high-throughput screen to identify compounds that modulate VHL proteostasis J. Biomol. Screen, 17 (2012),pp. 572-580
    [26] Ding, Z., German, P., Bai, S. et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein Cancer Res., 74 (2014),pp. 3127-3136
    [27] Dutcher, J.P. Recent developments in the treatment of renal cell carcinoma Ther. Adv. Urol., 5 (2013),pp. 338-353
    [28] Endersby, R., Zhu, X., Hay, N. et al. Nonredundant functions for Akt isoforms in astrocyte growth and gliomagenesis in an orthotopic transplantation model Cancer Res., 71 (2011),pp. 4106-4116
    [29] Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations Nat. Rev. Cancer, 9 (2009),pp. 550-562
    [30] Figlin, R.A., Kaufmann, I., Brechbiel, J. Targeting PI3K and mTORC2 in metastatic renal cell carcinoma: new strategies for overcoming resistance to VEGFR and mTORC1 inhibitors Int. J. Cancer, 133 (2013),pp. 788-796
    [31] Fisher, R., Horswell, S., Rowan, A. et al. Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution Genome Biol., 15 (2014),p. 433
    [32] Frew, I.J., Moch, H. A clearer view of the molecular complexity of clear cell renal cell carcinoma Annu. Rev. Pathol., 10 (2015),pp. 263-289
    [33] Fruman, D.A., Meyers, R.E., Cantley, L.C. Phosphoinositide kinases Annu. Rev. Biochem., 67 (1998),pp. 481-507
    [34] Fruman, D.A., Rommel, C. PI3K and cancer: lessons, challenges and opportunities Nat. Rev. Drug Discov., 13 (2014),pp. 140-156
    [35] Gao, J., Aksoy, B.A., Dogrusoz, U. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal Sci. Signal., 6 (2013),pp. 1-19
    [36] Gao, M., Liang, J., Lu, Y. et al. Site-specific activation of AKT protects cells from death induced by glucose deprivation Oncogene, 33 (2014),pp. 745-755
    [37] Gerlinger, M., Horswell, S., Larkin, J. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing Nat. Genet., 46 (2014),pp. 225-233
    [38] Gerlinger, M., Rowan, A.J., Horswell, S. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing N. Engl. J. Med., 366 (2012),pp. 883-892
    [39] Gewinner, C., Wang, Z.C., Richardson, A. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling Cancer Cell, 16 (2009),pp. 115-125
    [40] Girardi, C., James, P., Zanin, S. et al. Differential phosphorylation of Akt1 and Akt2 by protein kinase CK2 may account for isoform specific functions BBA- Mol. Cell Res., 1843 (2014),pp. 1865-1874
    [41] Grabiner, B.C., Nardi, V., Birsoy, K. et al. A diverse array of cancer-associated mTOR mutations are hyperactivating and can predict rapamycin sensitivity Cancer Discov., 4 (2014),pp. 554-563
    [42] Guo, H., Gao, M., Lu, Y. et al. Coordinate phosphorylation of multiple residues on single AKT1 and AKT2 molecules Oncogene, 33 (2014),pp. 3463-3472
    [43] Haar, E.V., Lee, S.-i., Bandhakavi, S. et al. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 Nat. Cell Biol., 9 (2007),pp. 316-323
    [44] Hay, N., Sonenberg, N. Upstream and downstream of mTOR Genes Dev., 18 (2004),pp. 1926-1945
    [45] Hennessy, B.T., Smith, D.L., Ram, P.T. et al. Exploiting the PI3K/AKT pathway for cancer drug discovery Nat. Rev. Drug Discov., 4 (2005),pp. 988-1004
    [46] Hers, I., Vincent, E.E., Tavaré, J.M. Akt signalling in health and disease Cell. Signal., 23 (2011),pp. 1515-1527
    [47] Hornbeck, P.V., Kornhauser, J.M., Tkachev, S. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse Nucleic Acids Res., 40 (2012),pp. D261-D270
    [48] Huang, D., Ding, Y., Li, Y. et al. Sunitinib acts primarily on tumor endothelium rather than tumor cells to inhibit the growth of renal cell carcinoma Cancer Res., 70 (2010),pp. 1053-1062
    [49] Ikenoue, T., Inoki, K., Yang, Q. et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling EMBO J., 27 (2008),pp. 1919-1931
    [50] Isaacs, J.S. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability Cancer Cell, 8 (2005),pp. 143-153
    [51] Jaiswal, B.S., Janakiraman, V., Kljavin, N.M. et al. Somatic mutations in p85α promote tumorigenesis through Class IA PI3K activation Cancer Cell, 16 (2009),pp. 463-474
    [52] Jonasch, E., Futreal, P.A., Davis, I.J. et al. State of the science: an update on renal cell carcinoma Mol. Cancer Res., 10 (2012),pp. 859-880
    [53] Jonasch, E., Gao, J., Rathmell, W.K. Renal cell carcinoma Br. Med. J., 349 (2014),p. g4797
    [54] Kang, S., Bader, A.G., Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 802-807
    [55] Lawrence, M.S., Stojanov, P., Mermel, C.H. et al. Discovery and saturation analysis of cancer genes across 21 tumour types Nature, 505 (2014),pp. 495-501
    [56] Lee, C.M., Hickey, M.M., Sanford, C.A. et al. Oncogene, 28 (2009),pp. 1694-1705
    [57] Li, J., Lu, Y., Akbani, R. et al. TCPA: a resource for cancer functional proteomics data Nat. Methods, 10 (2013),pp. 1046-1047
    [58] Lian, J.H., Wang, W.H., Wang, J.Q. et al. MicroRNA-122 promotes proliferation, invasion and migration of renal cell carcinoma cells through the PI3K/Akt signaling pathway Asian Pac. J. Cancer Prev., 14 (2013),pp. 5017-5021
    [59] Liang, H., Cheung, L.W., Li, J. et al. Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer Genome Res., 22 (2012),pp. 2120-2129
    [60] Linehan, W.M., Srinivasan, R., Schmidt, L.S. The genetic basis of kidney cancer: a metabolic disease Nat. Rev. Urol., 7 (2010),pp. 277-285
    [61] Lu, Z.H., Shvartsman, M.B., Lee, A.Y. et al. Mammalian target of rapamycin activator RHEB is frequently overexpressed in human carcinomas and is critical and sufficient for skin epithelial carcinogenesis Cancer Res., 70 (2010),pp. 3287-3298
    [62] Mahajan, K., Coppola, D., Challa, S. et al. Ack1 mediated AKT/PKB tyrosine 176 phosphorylation regulates its activation PLoS One, 5 (2010),p. e9646
    [63] Manning, B.D., Cantley, L.C. Rheb fills a GAP between TSC and TOR Trends Biochem. Sci., 28 (2003),pp. 573-576
    [64] Manning, B.D., Cantley, L.C. AKT/PKB signaling: navigating downstream Cell, 129 (2007),pp. 1261-1274
    [65] Mao, M., Fang, X., Lu, Y. et al. Inhibition of growth-factor-induced phosphorylation and activation of protein kinase B/Akt by atypical protein kinase C in breast cancer cells Biochem. J., 352 (2000),pp. 475-482
    [66] Maxwell, P.H., Wiesener, M.S., Chang, G.W. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis Nature, 399 (1999),pp. 271-275
    [67] Murph, M., Smith, D., Hennessy, B. et al.
    [68] Nickerson, M.L., Jaeger, E., Shi, Y. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors Clin. Cancer Res., 14 (2008),pp. 4726-4734
    [69] O'Reilly, K.E., Rojo, F., She, Q.B. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt Cancer Res., 66 (2006),pp. 1500-1508
    [70] Oh, W.J., Wu, C.C., Kim, S.J. et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide EMBO J., 29 (2010),pp. 3939-3951
    [71] Powell, D.J., Hajduch, E., Kular, G. et al. Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCζ-dependent mechanism Mol. Cell Biol., 23 (2003),pp. 7794-7808
    [72] Randall, J.M., Millard, F., Kurzrock, R. Molecular aberrations, targeted therapy, and renal cell carcinoma: current state-of-the-art Cancer Metastasis Rev., 33 (2014),pp. 1109-1124
    [73] Rechsteiner, M.P., von Teichman, A., Nowicka, A. et al. Cancer Res., 71 (2011),pp. 5500-5511
    [74] Roe, J.S., Kim, H., Lee, S.M. et al. p53 stabilization and transactivation by a von Hippel-Lindau protein Mol. Cell, 22 (2006),pp. 395-405
    [75] Ruderman, N.B., Kapeller, R., White, M.F. et al. Activation of phosphatidylinositol 3-kinase by insulin Proc. Natl. Acad. Sci. USA, 87 (1990),pp. 1411-1415
    [76] Samuels, Y., , Schmidt-Kittler, O., Cummins, J.M. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells Cancer Cell, 7 (2005),pp. 561-573
    [77] Samuels, Y., Wang, Z., Bardelli, A. et al. Science, 304 (2004),p. 554
    [78] Sarbassov, D.D., Guertin, D.A., Ali, S.M. et al. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex Science, 307 (2005),pp. 1098-1101
    [79] Sato, Y., Yoshizato, T., Shiraishi, Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma Nat. Genet., 45 (2013),pp. 860-867
    [80] Sengupta, S., Peterson, T.R., Sabatini, D.M. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress Mol. Cell, 40 (2010),pp. 310-322
    [81] Shayesteh, L., Lu, Y., Kuo, W.L. et al. PIK3CA is implicated as an oncogene in ovarian cancer Nat. Genet., 21 (1999),pp. 99-102
    [82] Song, M.S., Salmena, L., Pandolfi, P.P. The functions and regulation of the PTEN tumour suppressor Nat. Rev. Mol. Cell Biol., 13 (2012),pp. 283-296
    [83] Stemke-Hale, K., Gonzalez-Angulo, A.M., Lluch, A. et al. Cancer Res., 68 (2008),pp. 6084-6091
    [84] Stransky, N., Cerami, E., Schalm, S. et al. The landscape of kinase fusions in cancer Nat. Commun., 5 (2014),pp. 1-10
    [85] Sun, M., Wang, G., Paciga, J.E. et al. AKT1/PKBα kinase is frequently elevated in human cancers and its constitutive activation is required for oncogenic transformation in NIH3T3 Cells Am. J. Pathol., 159 (2001),pp. 431-437
    [86] The Cancer Genome Atlas Research, N Comprehensive molecular characterization of clear cell renal cell carcinoma Nature, 499 (2013),pp. 43-49
    [87] Tomlinson, I.P. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer Nat. Genet., 30 (2002),pp. 406-410
    [88] Toschi, A., Lee, E., Gadir, N. et al. Differential dependence of hypoxia-inducible factors 1 α and 2 α on mTORC1 and mTORC2 J. Biol. Chem., 283 (2008),pp. 34495-34499
    [89] Tremblay, F., Brule, S., Hee Um, S. et al. Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 14056-14061
    [90] Twardowski, P.W., Mack, P.C., Papillary renal cell carcinoma: current progress and future directions Clin. Genitourin. Cancer, 12 (2014),pp. 74-79
    [91] Varela, I., Tarpey, P., Raine, K. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma Nature, 469 (2011),pp. 539-542
    [92] Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. et al. The emerging mechanisms of isoform-specific PI3K signalling Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 329-341
    [93] Xu, X., Wu, J., Li, S. et al. Mol. Cancer, 13 (2014),p. 109
  • 加载中
计量
  • 文章访问数:  87
  • HTML全文浏览量:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-18
  • 录用日期:  2015-03-11
  • 修回日期:  2015-03-03
  • 网络出版日期:  2015-03-19
  • 刊出日期:  2015-07-20

目录

    /

    返回文章
    返回