留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting

Fengjiao Chen Ying Wang Yilin Yuan Wei Zhang Zijian Ren Yong Jin Xiaorui Liu Qiang Xiong Qin Chen Manling Zhang Xiaokang Li Lihua Zhao Ze Li Zhaoqiang Wu Yanfei Zhang Feifei Hu Juan Huang Rongfeng Li Yifan Dai

Fengjiao Chen, Ying Wang, Yilin Yuan, Wei Zhang, Zijian Ren, Yong Jin, Xiaorui Liu, Qiang Xiong, Qin Chen, Manling Zhang, Xiaokang Li, Lihua Zhao, Ze Li, Zhaoqiang Wu, Yanfei Zhang, Feifei Hu, Juan Huang, Rongfeng Li, Yifan Dai. Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting[J]. Journal of Genetics and Genomics, 2015, 42(8): 437-444. doi: 10.1016/j.jgg.2015.05.002
Citation: Fengjiao Chen, Ying Wang, Yilin Yuan, Wei Zhang, Zijian Ren, Yong Jin, Xiaorui Liu, Qiang Xiong, Qin Chen, Manling Zhang, Xiaokang Li, Lihua Zhao, Ze Li, Zhaoqiang Wu, Yanfei Zhang, Feifei Hu, Juan Huang, Rongfeng Li, Yifan Dai. Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting[J]. Journal of Genetics and Genomics, 2015, 42(8): 437-444. doi: 10.1016/j.jgg.2015.05.002

doi: 10.1016/j.jgg.2015.05.002

Generation of B Cell-Deficient Pigs by Highly Efficient CRISPR/Cas9-Mediated Gene Targeting

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Aigner, B., Renner, S., Kessler, B. et al. Transgenic pigs as models for translational biomedical research J. Mol. Med., 88 (2010),pp. 653-664
    [2] Bassett, A.R., Liu, J.L. J. Genet. Genomics, 41 (2014),pp. 7-19
    [3] Butler, J.E., Sun, J.S., Navarro, P. The swine Ig heavy chain locus has a single JH and no identifiable IgD Int. Immunol., 8 (1996),pp. 1897-1904
    [4] Carter, D.B., Lai, L., Park, K.W. et al. Phenotyping of transgenic cloned piglets Cloning Stem Cells, 4 (2002),pp. 131-145
    [5] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [6] Eguchi-Ogawa, T., Wertz, N., Sun, X.Z. et al. Antibody repertoire development in fetal and neonatal piglets. XI. The relationship of variable heavy chain gene usage and the genomic organization of the variable heavy chain locus J. Immunol., 184 (2010),pp. 3734-3742
    [7] Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [8] Green, L., Hardy, M., Maynard-Currie, C. et al. Antigen-specific human monoclonal antibodies from mice engineered with human Ig heavy and light chain YACs Nat. Genet., 7 (1994),pp. 13-21
    [9] Hai, T., Teng, F., Guo, R. et al. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system Cell Res., 24 (2014),pp. 372-375
    [10] Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [11] Jakobovits, A., Vergara, G.J., Kennedy, J.L. et al. Analysis of homozygous mutant chimeric mice: deletion of the immunoglobulin heavy-chain joining region blocks B-cell development and antibody production Proc. Natl. Acad. Sci. USA, 90 (1993),pp. 2551-2555
    [12] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [13] Jung, D., Giallourakis, C., Mostoslavsky, R. et al. Mechanism and control of V (D) J recombination at the immunoglobulin heavy chain locus Annu. Rev. Immunol., 24 (2006),pp. 541-570
    [14] Kitamura, D., Roes, J., Kühn, R. et al. AB cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene Nature, 350 (1991),pp. 423-426
    [15] Kuroiwa, Y., Kasinathan, P., Choi, Y.J. et al. Cloned transchromosomic calves producing human immunoglobulin Nat. Biotechnol., 20 (2002),pp. 889-894
    [16] Kuroiwa, Y., Kasinathan, P., Sathiyaseelan, T. et al. Antigen-specific human polyclonal antibodies from hyperimmunized cattle Nat. Biotechnol., 27 (2009),pp. 173-181
    [17] Lai, L., Kang, J.X., Li, R. et al. Generation of cloned transgenic pigs rich in omega-3 fatty acids Nat. Biotechnol., 24 (2006),pp. 435-436
    [18] Li, D., Qiu, Z., Shao, Y. et al. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 681-683
    [19] Li, W., Teng, F., Li, T. et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems Nat. Biotechnol., 31 (2013),pp. 684-686
    [20] Lonberg, N. Human antibodies from transgenic animals Nat. Biotechnol., 23 (2005),pp. 1117-1125
    [21] Lonberg, N., Taylor, L.D., Harding, F.A. et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications Nature, 368 (1994),pp. 856-859
    [22] Ma, Y., Zhang, X., Shen, B. et al. Generating rats with conditional alleles using CRISPR/Cas9 Cell Res., 24 (2014),pp. 122-125
    [23] Mendicino, M., Ramsoondar, J., Phelps, C. et al. Generation of antibody-and B cell-deficient pigs by targeted disruption of the J-region gene segment of the heavy chain locus Transgenic Res., 20 (2011),pp. 625-641
    [24] Niu, Y., Shen, B., Cui, Y. et al. Cell, 156 (2014),pp. 836-843
    [25] Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [26] Ramsoondar, J., Mendicino, M., Phelps, C. et al. Targeted disruption of the porcine immunoglobulin kappa light chain locus Transgenic Res., 20 (2011),pp. 643-653
    [27] Randall, T.D., Carragher, D.M., Rangel-Moreno, J. Development of secondary lymphoid organs Annu. Rev. Immunol., 26 (2008),pp. 627-650
    [28] Rogers, C.S., Stoltz, D.A., Meyerholz, D.K. et al. Science, 321 (2008),pp. 1837-1841
    [29] Shen, B., Zhang, J., Wu, H. et al. Cell Res., 23 (2013),pp. 720-723
    [30] Tan, W., Carlson, D.F., Lancto, C.A. et al. Efficient nonmeiotic allele introgression in livestock using custom endonucleases Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 16526-16531
    [31] Tesson, L., Usal, C., Ménoret, S. et al. Knockout rats generated by embryo microinjection of TALENs Nat. Biotechnol., 29 (2011),pp. 695-696
    [32] Tomizuka, K., Shinohara, T., Yoshida, H. et al. Double trans-chromosomic mice: maintenance of two individual human chromosome fragments containing Ig heavy and κ loci and expression of fully human antibodies Proc. Natl. Acad. Sci. USA, 97 (2000),pp. 722-727
    [33] Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [34] Wei, C., Liu, J., Yu, Z. et al. TALEN or Cas9-rapid, efficient and specific choices for genome modifications J. Genet. Genomics, 40 (2013),pp. 281-289
    [35] Whitworth, K.M., Lee, K., Benne, J.A. et al. Biol. Reprod., 91 (2014),pp. 1-13
    [36] Wiedenheft, B., Sternberg, S.H., Doudna, J.A. RNA-guided genetic silencing systems in bacteria and archaea Nature, 482 (2012),pp. 331-338
    [37] Yel, L., Minegishi, Y., Coustan-Smith, E. et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia N. Engl. J. Med., 335 (1996),pp. 1486-1493
    [38] Zhou, X., Xin, J., Fan, N. et al. Cell. Mol. Life Sci., 72 (2015),pp. 1175-1184
  • 加载中
计量
  • 文章访问数:  105
  • HTML全文浏览量:  35
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-09
  • 录用日期:  2015-05-19
  • 修回日期:  2015-05-01
  • 网络出版日期:  2015-05-27
  • 刊出日期:  2015-08-20

目录

    /

    返回文章
    返回