留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae

Ying-Tao Zhao Meng Wang Zhi-Min Wang Rong-Xiang Fang Xiu-Jie Wang Yan-Tao Jia

Ying-Tao Zhao, Meng Wang, Zhi-Min Wang, Rong-Xiang Fang, Xiu-Jie Wang, Yan-Tao Jia. Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae[J]. Journal of Genetics and Genomics, 2015, 42(11): 625-637. doi: 10.1016/j.jgg.2015.08.001
Citation: Ying-Tao Zhao, Meng Wang, Zhi-Min Wang, Rong-Xiang Fang, Xiu-Jie Wang, Yan-Tao Jia. Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae[J]. Journal of Genetics and Genomics, 2015, 42(11): 625-637. doi: 10.1016/j.jgg.2015.08.001

doi: 10.1016/j.jgg.2015.08.001

Dynamic and Coordinated Expression Changes of Rice Small RNAs in Response to Xanthomonas oryzae pv. oryzae

More Information
    • 关键词:
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Adhikari, T.B., Mew, T.W., Teng, P.S. Plant Disease, 78 (1994),pp. 73-77
    [2] Albrecht, C., Boutrot, F., Segonzac, C. et al. Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1 Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 303-308
    [3] Allen, E., Xie, Z., Gustafson, A.M. et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants Cell, 121 (2005),pp. 207-221
    [4] Altschul, S.F., Gish, W., Miller, W. et al. Basic local alignment search tool J. Mol. Biol., 215 (1990),pp. 403-410
    [5] Axtell, M.J. Classification and comparison of small RNAs from plants Annu. Rev. Plant Biol., 64 (2013),pp. 137-159
    [6] Bari, R., Jones, J.D. Role of plant hormones in plant defence responses Plant Mol. Biol., 69 (2009),pp. 473-488
    [7] Bart, R.S., Chern, M., Vega-Sanchez, M.E. et al. PLoS Genet., 6 (2010),p. e1001123
    [8] Beauclair, L., Yu, A., Bouche, N. Plant J., 62 (2010),pp. 454-462
    [9] Belkhadir, Y., Jaillais, Y., Epple, P. et al. Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 297-302
    [10] Boccara, M., Sarazin, A., Thiebeauld, O. et al. PLoS Pathog., 10 (2014),p. e1003883
    [11] Chen, L.Q., Hou, B.H., Lalonde, S. et al. Sugar transporters for intercellular exchange and nutrition of pathogens Nature, 468 (2010),pp. 527-532
    [12] Dangl, J.L., Jones, J.D. Plant pathogens and integrated defence responses to infection Nature, 411 (2001),pp. 826-833
    [13] Deng, H., Liu, H., Li, X. et al. A CCCH-type zinc finger nucleic acid-binding protein quantitatively confers resistance against rice bacterial blight disease Plant Physiol., 158 (2012),pp. 876-889
    [14] Ding, B., Bellizzi Mdel, R., Ning, Y. et al. HDT701, a histone H4 deacetylase, negatively regulates plant innate immunity by modulating histone H4 acetylation of defense-related genes in rice Plant Cell, 24 (2012),pp. 3783-3794
    [15] Ding, X., Cao, Y., Huang, L. et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansion expression and promotes salicylate- and jasmonate-independent basal immunity in rice Plant Cell, 20 (2008),pp. 228-240
    [16] Dobrenel, T., Marchive, C., Azzopardi, M. et al. Sugar metabolism and the plant target of rapamycin kinase: a sweet operaTOR? Front Plant Sci., 4 (2013),p. 93
    [17] Dobrenel, T., Marchive, C., Sormani, R. et al. Regulation of plant growth and metabolism by the TOR kinase Biochem. Soc. Trans., 39 (2011),pp. 477-481
    [18] Dodds, P.N., Rathjen, J.P. Plant immunity: towards an integrated view of plant-pathogen interactions Nat. Rev. Genet., 11 (2010),pp. 539-548
    [19] Domingo, C., Andres, F., Tharreau, D. et al. Mol. Plant Microbe Interact., 22 (2009),pp. 201-210
    [20] Du, P., Wu, J., Zhang, J. et al. Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors PLoS Pathog., 7 (2011),p. e1002176
    [21] Dugas, D.V., Bartel, B. Plant Mol. Biol., 67 (2008),pp. 403-417
    [22] Fahlgren, N., Howell, M.D., Kasschau, K.D. et al. PLoS One, 2 (2007),p. e219
    [23] Fei, Q., Xia, R., Meyers, B.C. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks Plant Cell, 25 (2013),pp. 2400-2415
    [24] Fitzgerald, H.A., Canlas, P.E., Chern, M.S. et al. Plant J., 43 (2005),pp. 335-347
    [25] Gielen, H., Remans, T., Vangronsveld, J. et al. MicroRNAs in metal stress: specific roles or secondary responses? Int. J. Mol. Sci., 13 (2012),pp. 15826-15847
    [26] Gnanamanickam, S.S., Priyadarisini, V.B., Narayanan, N.N. et al. An overview of bacterial blight disease of rice and strategies for its management Current Sci., 77 (1999),pp. 1435-1444
    [27] Gomi, K., Satoh, M., Ozawa, R. et al. Plant J., 61 (2010),pp. 46-57
    [28] Guilfoyle, T.J., Hagen, G. Auxin response factors Curr. Opin. Plant Biol., 10 (2007),pp. 453-460
    [29] Guleria, P., Mahajan, M., Bhardwaj, J. et al. Plant small RNAs: biogenesis, mode of action and their roles in abiotic stresses Genomics Proteomics Bioinformatics, 9 (2011),pp. 183-199
    [30] Heller, J., Tudzynski, P. Reactive oxygen species in phytopathogenic fungi: signaling, development, and disease Annu. Rev. Phytopathol., 49 (2011),pp. 369-390
    [31] Jagadeeswaran, G., Saini, A., Sunkar, R. Planta, 229 (2009),pp. 1009-1014
    [32] Jaillais, Y., Belkhadir, Y., Balsemao-Pires, E. et al. Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 8503-8507
    [33] Jeong, D.H., Park, S., Zhai, J. et al. Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage Plant Cell, 23 (2011),pp. 4185-4207
    [34] Jiang, Y., Chen, X., Ding, X. et al. The XA21 binding protein XB25 is required for maintaining XA21-mediated disease resistance Plant J., 73 (2013),pp. 814-823
    [35] Jones, D.A., Takemoto, D. Plant innate immunity - direct and indirect recognition of general and specific pathogen-associated molecules Curr. Opin. Immunol., 16 (2004),pp. 48-62
    [36] Kallman, T., Chen, J., Gyllenstrand, N. et al. A significant fraction of 21-nucleotide small RNA originates from phased degradation of resistance genes in several perennial species Plant Physiol., 162 (2013),pp. 741-754
    [37] Katiyar-Agarwal, S., Gao, S., Vivian-Smith, A. et al. Genes Dev., 21 (2007),pp. 3123-3134
    [38] Katiyar-Agarwal, S., Jin, H. Role of small RNAs in host-microbe interactions Annu. Rev. Phytopathol., 48 (2010),pp. 225-246
    [39] Katiyar-Agarwal, S., Morgan, R., Dahlbeck, D. et al. A pathogen-inducible endogenous siRNA in plant immunity Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 18002-18007
    [40] Kazan, K., Manners, J.M. Linking development to defense: auxin in plant-pathogen interactions Trends Plant Sci., 14 (2009),pp. 373-382
    [41] Khraiwesh, B., Zhu, J.K., Zhu, J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants Biochim. Biophys. Acta, 1819 (2012),pp. 137-148
    [42] Kobe, B., Kajava, A.V. The leucine-rich repeat as a protein recognition motif Curr. Opin. Struct. Biol., 11 (2001),pp. 725-732
    [43] Kozomara, A., Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data Nucleic Acids Res., 39 (2011),pp. D152-D157
    [44] Lee, S.W., Han, S.W., Sririyanum, M. et al. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity Science, 326 (2009),pp. 850-853
    [45] Li, F., Pignatta, D., Bendix, C. et al. MicroRNA regulation of plant innate immune receptors Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 1790-1795
    [46] Li, J., Wu, Y., Qi, Y. Sci. China Life Sci., 57 (2014),pp. 36-45
    [47] Li, Y., Lu, Y.G., Shi, Y. et al. Plant Physiol., 164 (2014),pp. 1077-1092
    [48] Li, Y., Zhang, Q., Zhang, J. et al. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity Plant Physiol., 152 (2010),pp. 2222-2231
    [49] Li, Y.F., Zheng, Y., Addo-Quaye, C. et al. Transcriptome-wide identification of microRNA targets in rice Plant J., 62 (2010),pp. 742-759
    [50] Li, Z., Zhou, X. Small RNA biology: from fundamental studies to applications Sci. China Life Sci., 56 (2013),pp. 1059-1062
    [51] Li, Z.K., Arif, M., Zhong, D.B. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 7994-7999
    [52] Lin, S.I., Santi, C., Jobet, E. et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation Plant Cell Physiol., 51 (2010),pp. 2119-2131
    [53] Liu, J., Cheng, X., Liu, D. et al. The miR9863 family regulates distinct Mla alleles in barley to attenuate NLR receptor-triggered disease resistance and cell-death signaling PLoS Genet., 10 (2014),p. e1004755
    [54] Livak, K.J., Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method Methods, 25 (2001),pp. 402-408
    [55] Marchler-Bauer, A., Zheng, C., Chitsaz, F. et al. CDD: conserved domains and protein three-dimensional structure Nucleic Acids Res., 41 (2013),pp. D348-D352
    [56] Marger, M.D., A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport Trends Biochem. Sci., 18 (1993),pp. 13-20
    [57] Mittler, R., Vanderauwera, S., Gollery, M. et al. Reactive oxygen gene network of plants Trends Plant Sci., 9 (2004),pp. 490-498
    [58] Nakashita, H., Yasuda, M., Nitta, T. et al. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice Plant J., 33 (2003),pp. 887-898
    [59] Navarro, L., Dunoyer, P., Jay, F. et al. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling Science, 312 (2006),pp. 436-439
    [60] Navarro, L., Jay, F., Nomura, K. et al. Suppression of the microRNA pathway by bacterial effector proteins Science, 321 (2008),pp. 964-967
    [61] Pao, S.S., Paulsen, I.T., Major facilitator superfamily Microbiol. Mol. Biol. Rev., 62 (1998),pp. 1-34
    [62] Pumplin, N., Voinnet, O. RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence Nat. Rev. Microbiol., 11 (2013),pp. 745-760
    [63] Qiao, Y., Liu, L., Xiong, Q. et al. Oomycete pathogens encode RNA silencing suppressors Nat. Genet., 45 (2013),pp. 330-333
    [64] Remy, E., Cabrito, T.R., Baster, P. et al. Plant Cell, 25 (2013),pp. 901-926
    [65] Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y. et al. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates Plant J., 67 (2011),pp. 218-231
    [66] Rodrigues, J.A., Ruan, R., Nishimura, T. et al. Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 7934-7939
    [67] Ruiz-Ferrer, V., Voinnet, O. Roles of plant small RNAs in biotic stress responses Annu. Rev. Plant Biol., 60 (2009),pp. 485-510
    [68] Sa-Correia, I., Tenreiro, S. J. Biotechnol., 98 (2002),pp. 215-226
    [69] , Beatty, J.T., Goffeau, A., Harley, K.T. et al. The major facilitator superfamily J. Mol. Microbiol. Biotechnol., 1 (1999),pp. 257-279
    [70] Seo, J.K., Wu, J., Lii, Y. et al. Contribution of small RNA pathway components in plant immunity Mol. Plant Microbe Interact., 26 (2013),pp. 617-625
    [71] Shen, X., Yuan, B., Liu, H. et al. Plant J., 64 (2010),pp. 86-99
    [72] Shivaprasad, P.V., Chen, H.M., Patel, K. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs Plant Cell, 24 (2012),pp. 859-874
    [73] Simmons, C.R., Fridlender, M., Navarro, P.A. et al. A maize defense-inducible gene is a major facilitator superfamily member related to bacterial multidrug resistance efflux antiporters Plant Mol. Biol., 52 (2003),pp. 433-446
    [74] Song, X., Li, P., Zhai, J. et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis Plant J., 69 (2012),pp. 462-474
    [75] Song, X., Wang, D., Ma, L. et al. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development Plant J., 71 (2012),pp. 378-389
    [76] Sun, X., Cao, Y., Yang, Z. et al. Plant J., 37 (2004),pp. 517-527
    [77] Sunkar, R., Kapoor, A., Zhu, J.K. Plant Cell, 18 (2006),pp. 2051-2065
    [78] Tao, Z., Liu, H., Qiu, D. et al. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions Plant Physiol., 151 (2009),pp. 936-948
    [79] Truman, W.M., Bennett, M.H., Turnbull, C.G. et al. Plant Physiol., 152 (2010),pp. 1562-1573
    [80] Tsuji, H., Aya, K., Ueguchi-Tanaka, M. et al. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers Plant J., 47 (2006),pp. 427-444
    [81] Wang, D., Pajerowska-Mukhtar, K., Culler, A.H. et al. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway Curr. Biol., 17 (2007),pp. 1784-1790
    [82] Wang, Z.Y. Brassinosteroids modulate plant immunity at multiple levels Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 7-8
    [83] Wei, L.Q., Yan, L.F., Wang, T. Genome Biol., 12 (2011),p. R53
    [84] Weiberg, A., Wang, M., Lin, F.M. et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways Science, 342 (2013),pp. 118-123
    [85] Wu, G. Plant microRNAs and development J. Genet. Genomics, 40 (2013),pp. 217-230
    [86] Wu, L., Zhang, Q., Zhou, H. et al. Rice microRNA effector complexes and targets Plant Cell, 21 (2009),pp. 3421-3435
    [87] Xia, K., Wang, R., Ou, X. et al. PLoS One, 7 (2012),p. e30039
    [88] Yamasaki, H., Abdel-Ghany, S.E., Cohu, C.M. et al. J. Biol. Chem., 282 (2007),pp. 16369-16378
    [89] Yang, D.L., Yang, Y., He, Z. Roles of plant hormones and their interplay in rice immunity Mol. Plant., 6 (2013),pp. 675-685
    [90] Yuan, M., Chu, Z., Li, X. et al. Plant Cell, 22 (2010),pp. 3164-3176
    [91] Zhai, J., Jeong, D.H., De Paoli, E. et al. Genes Dev., 25 (2011),pp. 2540-2553
    [92] Zhai, J., Zhao, Y., Simon, S.A. et al. Plant microRNAS display differential 3' truncation and tailing modifications that are ARGONAUTE1 dependent and conserved across species Plant Cell, 25 (2013),pp. 2417-2428
    [93] Zhang, X., Zhao, H., Gao, S. et al. Mol. Cell, 42 (2011),pp. 356-366
    [94] Zhang, Y.C., Yu, Y., Wang, C.Y. et al. Nat. Biotechnol., 31 (2013),pp. 848-852
    [95] Zhao, Y.T., Wang, M., Fu, S.X. et al. Plant Physiol., 158 (2012),pp. 813-823
    [96] Zheng, Q., Wang, X.J. GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis Nucleic Acids Res., 36 (2008),pp. W358-W363
    [97] Zhou, C.M., Wang, J.W. Regulation of flowering time by microRNAs J. Genet. Genomics, 40 (2013),pp. 211-215
    [98] Zhou, M., Gu, L., Li, P. et al. Degradome sequencing reveals endogenous small RNA targets in rice Front. Biol., 5 (2010),pp. 67-90
  • 加载中
计量
  • 文章访问数:  95
  • HTML全文浏览量:  40
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-08
  • 录用日期:  2015-08-07
  • 修回日期:  2015-08-04
  • 网络出版日期:  2015-08-17
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回