留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy

JoAnne J. Babula Jing-Yuan Liu

JoAnne J. Babula, Jing-Yuan Liu. Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy[J]. Journal of Genetics and Genomics, 2015, 42(10): 531-547. doi: 10.1016/j.jgg.2015.09.002
Citation: JoAnne J. Babula, Jing-Yuan Liu. Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy[J]. Journal of Genetics and Genomics, 2015, 42(10): 531-547. doi: 10.1016/j.jgg.2015.09.002

doi: 10.1016/j.jgg.2015.09.002

Integrate Omics Data and Molecular Dynamics Simulations toward Better Understanding of Human 14-3-3 Interactomes and Better Drugs for Cancer Therapy

More Information
    Corresponding author: E-mail address: jliu2@iu.edu (Jing-Yuan Liu)
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Aitken, A., Baxter, H., Dubois, T. et al. Specificity of 14-3-3 isoform dimer interactions and phosphorylation Biochem. Soc. Trans., 30 (2002),pp. 351-360
    [2] Ajjappala, B.S., Kim, Y.S., Kim, M.S. et al. 14-3-3 gamma is stimulated by IL-3 and promotes cell proliferation J. Immunol., 182 (2009),pp. 1050-1060
    [3] Anders, C., Higuchi, Y., Koschinsky, K. et al. Chem. Biol., 20 (2013),pp. 583-593
    [4] Benzinger, A., Popowicz, G.M., Joy, J.K. et al. The crystal structure of the non-liganded 14-3-3 sigma protein: insights into determinants of isoform specific ligand binding and dimerization Cell Res., 15 (2005),pp. 219-227
    [5] Benzinger, A., Popowicz, G.M., Joy, J.K. et al. The crystal structure of the non-liganded 14-3-3sigma protein: insights into determinants of isoform specific ligand binding and dimerization Cell Res., 15 (2005),pp. 219-227
    [6] Berg, D., Holzmann, C., Riess, O. 14-3-3 proteins in the nervous system Nat. Rev. Neurosci., 4 (2003),pp. 752-762
    [7] Bier, D., Rose, R., Bravo-Rodriguez, K. et al. Molecular tweezers modulate 14-3-3 protein-protein interactions Nat. Chem., 5 (2013),pp. 234-239
    [8] Bonet, R., Vakonakis, I., Campbell, I.D. Characterization of 14-3-3-zeta Interactions with integrin tails J. Mol. Biol., 425 (2013),pp. 3060-3072
    [9] Boudreau, A., Tanner, K., Wang, D. et al. 14-3-3sigma stabilizes a complex of soluble actin and intermediate filament to enable breast tumor invasion Proc. Natl. Acad. Sci. USA, 110 (2013),pp. E3937-E3944
    [10] Bustad, H.J., Skjaerven, L., Ying, M. et al. The peripheral binding of 14-3-3gamma to membranes involves isoform-specific histidine residues PLoS One, 7 (2012),p. e49671
    [11] Choi, J.E., Hur, W., Jung, C.K. et al. Silencing of 14-3-3zeta over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium Cancer Lett., 303 (2011),pp. 99-107
    [12] Clapp, C., Portt, L., Khoury, C. et al. 14-3-3 protects against stress-induced apoptosis Cell Death Dis., 3 (2012),p. e348
    [13] Colotta, F., Allavena, P., Sica, A. et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability Carcinogenesis, 30 (2009),pp. 1073-1081
    [14] Corradi, V., Mancini, M., Manetti, F. et al. Identification of the first non-peptidic small molecule inhibitor of the c-Abl/14-3-3 protein-protein interactions able to drive sensitive and Imatinib-resistant leukemia cells to apoptosis Bioorg. Med. Chem. Lett., 20 (2010),pp. 6133-6137
    [15] Dar, A., Wu, D., Lee, N. et al. 14-3-3 proteins play a role in the cell cycle by shielding cdt2 from ubiquitin-mediated degradation Mol. Cell. Biol., 34 (2014),pp. 4049-4061
    [16] De Vries-van Leeuwen, I.J., da Costa Pereira, D., Flach, K.D. et al. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface Proc. Natl. Acad. Sci. USA, 110 (2013),pp. 8894-8899
    [17] Dim, D.C., Jiang, F., Qiu, Q. et al. The usefulness of S100P, mesothelin, fascin, prostate stem cell antigen, and 14-3-3 sigma in diagnosing pancreatic adenocarcinoma in cytological specimens obtained by endoscopic ultrasound guided fine-needle aspiration Diagn. Cytopathol., 42 (2014),pp. 193-199
    [18] Ding, H., Fineberg, N.S., Gray, M. et al. alpha-Synuclein overexpression represses 14-3-3theta transcription J. Mol. Neurosci., 51 (2013),pp. 1000-1009
    [19] Dong, S., Kang, S., Lonial, S. et al. Targeting 14-3-3 sensitizes native and mutant BCR-ABL to inhibition with U0126, rapamycin and Bcl-2 inhibitor GX15-070 Leukemia, 22 (2008),pp. 572-577
    [20] Fu, H., Subramanian, R.R., Masters, S.C. 14-3-3 proteins: structure, function, and regulation Annu. Rev. Pharmacol. Toxicol., 40 (2000),pp. 617-647
    [21] Fu, H.A., Subramanian, R.R., Masters, S.C. 14-3-3 proteins: structure, function, and regulation Annu. Rev. Pharmacol. Toxicol., 40 (2000),pp. 617-647
    [22] Ganguly, S., Weller, J.L., Ho, A. et al. Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205 Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 1222-1227
    [23] Gavrilov, K., Saltzman, W.M. Therapeutic siRNA: principles, challenges, and strategies Yale J. Biol. Med., 85 (2012),pp. 187-200
    [24] Glas, A., Bier, D., Hahne, G. et al. Constrained peptides with target-adapted cross-links as inhibitors of a pathogenic protein-protein interaction Angew. Chem. Int. Ed. Engl., 53 (2014),pp. 2489-2493
    [25] Gong, F., Wang, G., Ye, J. et al. 14-3-3beta regulates the proliferation of glioma cells through the GSK3beta/beta-catenin signaling pathway Oncol. Rep., 30 (2013),pp. 2976-2982
    [26] He, M., Zhang, J., Shao, L. et al. Upregulation of 14-3-3 isoforms in acute rat myocardial injuries induced by burn and lipopolysaccharide Clin. Exp. Pharmacol. Physiol., 33 (2006),pp. 374-380
    [27] Hermeking, H. The 14-3-3 cancer connection Nat. Rev. Cancer, 3 (2003),pp. 931-943
    [28] Hermeking, H., Lengauer, C., Polyak, K. et al. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression Mol. Cell, 1 (1997),pp. 3-11
    [29] Hsu, P.H., Miaw, S.C., Chuang, C.C. et al. 14-3-3theta is a binding partner of rat Eag1 potassium channels PLoS One, 7 (2012),p. e41203
    [30] Hu, G., Li, H., Liu, J.Y. et al. Insight into conformational change for 14-3-3sigma protein by molecular dynamics simulation Int. J. Mol. Sci., 15 (2014),pp. 2794-2810
    [31] Ichimura, T., Kubota, H., Goma, T. et al. Transcriptomic and proteomic analysis of a 14-3-3 gene-deficient yeast Biochemistry, 43 (2004),pp. 6149-6158
    [32] Jasinski-Bergner, S., Stehle, F., Gonschorek, E. et al. Identification of 14-3-3beta gene as a novel miR-152 target using a proteome-based approach J. Biol. Chem., 289 (2014),pp. 31121-31135
    [33] Kato, M., Dobyns, W.B. Lissencephaly and the molecular basis of neuronal migration Hum. Mol. Genet., 12 (2003),pp. R89-R96
    [34] Killoran, R.C., Fan, J., Yang, D. et al. Structural analysis of the 14-3-3zeta/Chibby interaction involved in wnt/beta-catenin signaling PLoS One, 10 (2015),p. e0123934
    [35] Kosaka, Y., Cieslik, K.A., Li, L. et al. 14-3-3epsilon plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle Mol. Cell. Biol., 32 (2012),pp. 5089-5102
    [36] Kostelecky, B., Saurin, A.T., Purkiss, A. et al. Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon EMBO Rep., 10 (2009),pp. 983-989
    [37] Lee, C.G., Park, G.Y., Han, Y.K. et al. Roles of 14-3-3eta in mitotic progression and its potential use as a therapeutic target for cancers Oncogene, 32 (2013),pp. 1560-1569
    [38] Li, Z., Dong, Z., Myer, D. et al. Role of 14-3-3sigma in poor prognosis and in radiation and drug resistance of human pancreatic cancers BMC Cancer, 10 (2010),p. 598
    [39] Liu, D., Bienkowska, J., Petosa, C. et al. Crystal structure of the zeta isoform of the 14-3-3 protein Nature, 376 (1995),pp. 191-194
    [40] Liu, H.M., Loo, Y.M., Horner, S.M. et al. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity Cell. Host. Microbe., 11 (2012),pp. 528-537
    [41] Liu, J.Y., Li, Z., Li, H. et al. Critical residue that promotes protein dimerization: a story of partially exposed Phe25 in 14-3-3sigma J. Chem. Inf. Model, 51 (2011),pp. 2612-2625
    [42] Liu, Y., Liu, H., Han, B. et al. Identification of 14-3-3sigma as a contributor to drug resistance in human breast cancer cells using functional proteomic analysis Cancer Res., 66 (2006),pp. 3248-3255
    [43] Lu, C.H., Sun, H., Abu Bakar, F.B. et al. Rapid affinity-based fingerprinting of 14-3-3 isoforms using a combinatorial peptide microarray Angew. Chem. Int. Ed. Engl., 47 (2008),pp. 7438-7441
    [44] Macdonald, N., Welburn, J.P., Noble, M.E. et al. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3 Mol. Cell, 20 (2005),pp. 199-211
    [45] Mancini, M., Corradi, V., Petta, S. et al. A new nonpeptidic inhibitor of 14-3-3 induces apoptotic cell death in chronic myeloid leukemia sensitive or resistant to imatinib J. Pharmacol. Exp. Ther., 336 (2011),pp. 596-604
    [46] Marzinke, M.A., Mavencamp, T., Duratinsky, J. et al. 14-3-3epsilon and NAV2 interact to regulate neurite outgrowth and axon elongation Arch. Biochem. Biophys., 540 (2013),pp. 94-100
    [47] Masters, S.C., Fu, H. 14-3-3 proteins mediate an essential anti-apoptotic signal J. Biol. Chem., 276 (2001),pp. 45193-45200
    [48] Matta, A., Siu, K.W., Ralhan, R. 14-3-3 zeta as novel molecular target for cancer therapy Expert. Opin. Ther. Targets, 16 (2012),pp. 515-523
    [49] Messaritou, G., Grammenoudi, S., Skoulakis, E.M. J. Biol. Chem., 285 (2010),pp. 1692-1700
    [50] Mhawech, P. 14-3-3 proteins–an update Cell Res., 15 (2005),pp. 228-236
    [51] Michelsen, K., Mrowiec, T., Duderstadt, K.E. et al. A multimeric membrane protein reveals 14-3-3 isoform specificity in forward transport in yeast Traffic, 7 (2006),pp. 903-916
    [52] Molzan, M., Kasper, S., Roglin, L. et al. Stabilization of physical RAF/14-3-3 interaction by cotylenin A as treatment strategy for RAS mutant cancers ACS Chem. Biol., 8 (2013),pp. 1869-1875
    [53] Molzan, M., Ottmann, C. Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3zeta dimer J. Mol. Biol., 423 (2012),pp. 486-495
    [54] Molzan, M., Schumacher, B., Ottmann, C. et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling Mol. Cell. Biol., 30 (2010),pp. 4698-4711
    [55] Molzan, M., Weyand, M., Rose, R. et al. Structural insights of the MLF1/14-3-3 interaction FEBS J., 279 (2012),pp. 563-571
    [56] Moore, B.W., Perez, V.J.
    [57] Murata, T., Takayama, K., Urano, T. et al. 14-3-3zeta, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival Clin. Cancer Res., 18 (2012),pp. 5617-5627
    [58] Neal, C.L., Yao, J., Yang, W. et al. 14-3-3zeta overexpression defines high risk for breast cancer recurrence and promotes cancer cell survival Cancer Res., 69 (2009),pp. 3425-3432
    [59] Nguyen, A., Rothman, D.M., Stehn, J. et al. Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function Nat. Biotechnol., 22 (2004),pp. 993-1000
    [60] Obsil, T., Ghirlando, R., Klein, D.C. et al. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation Cell, 105 (2001),pp. 257-267
    [61] Ottmann, C., Yasmin, L., Weyand, M. et al. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis EMBO J., 26 (2007),pp. 902-913
    [62] Panni, S., Montecchi-Palazzi, L., Kiemer, L. et al. Proteomics, 11 (2011),pp. 128-143
    [63] Petosa, C., Masters, S.C., Bankston, L.A. et al. 14-3-3 zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove J. Biol. Chem., 273 (1998),pp. 16305-16310
    [64] Pettersen, E.F., Goddard, T.D., Huang, C.C. et al. UCSF Chimera–a visualization system for exploratory research and analysis J. Comput. Chem., 25 (2004),pp. 1605-1612
    [65] Peyrl, A., Weitzdoerfer, R., Gulesserian, T. et al. Aberrant expression of signaling-related proteins 14-3-3 gamma and RACK1 in fetal Down syndrome brain (trisomy 21) Electrophoresis, 23 (2002),pp. 152-157
    [66] Prasad, G.L., Valverius, E.M., McDuffie, E. et al. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells Cell Growth Differ., 3 (1992),pp. 507-513
    [67] Qi, W., Liu, X., Qiao, D. et al. Isoform-specific expression of 14-3-3 proteins in human lung cancer tissues Int. J. Cancer, 113 (2005),pp. 359-363
    [68] Qin, L., Dong, Z., Zhang, J.T. Reversible epigenetic regulation of 14-3-3sigma expression in acquired gemcitabine resistance by uhrf1 and DNA methyltransferase 1 Mol. Pharmacol., 86 (2014),pp. 561-569
    [69] Qin, S., Liu, Y., Tempel, W. et al. Structural basis for histone mimicry and hijacking of host proteins by influenza virus protein NS1 Nat. Commun., 5 (2014),p. 3952
    [70] Raungrut, P., Wongkotsila, A., Lirdprapamongkol, K. et al. Prognostic significance of 14-3-3gamma overexpression in advanced non-small cell lung cancer Asian Pac. J. Cancer. Prev., 15 (2014),pp. 3513-3518
    [71] Riou, P., Kjaer, S., Garg, R. et al. 14-3-3 proteins interact with a hybrid prenyl-phosphorylation motif to inhibit G proteins Cell, 153 (2013),pp. 640-653
    [72] Rittinger, K., Budman, J., Xu, J. et al. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding Mol. Cell, 4 (1999),pp. 153-166
    [73] Roberts, R.L., Mosch, H.U., Fink, G.R. Cell, 89 (1997),pp. 1055-1065
    [74] Roglin, L., Thiel, P., Kohlbacher, O. et al. Covalent attachment of pyridoxal-phosphate derivatives to 14-3-3 proteins Proc. Natl. Acad. Sci. USA, 109 (2012),pp. E1051-E1053
    [75] Rose, R., Rose, M., Ottmann, C. Identification and structural characterization of two 14-3-3 binding sites in the human peptidylarginine deiminase type VI J. Struct. Biol., 180 (2012),pp. 65-72
    [76] Sato, S., Chiba, T., Sakata, E. et al. 14-3-3eta is a novel regulator of parkin ubiquitin ligase EMBO J., 25 (2006),pp. 211-221
    [77] Scheibner, K.A., Teaboldt, B., Hauer, M.C. et al. MiR-27a functions as a tumor suppressor in acute leukemia by regulating 14-3-3theta PLoS One, 7 (2012),p. e50895
    [78] Schumacher, B., Mondry, J., Thiel, P. et al. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer FEBS Lett., 584 (2010),pp. 1443-1448
    [79] Schumacher, B., Skwarczynska, M., Rose, R. et al. Structure of a 14-3-3sigma-YAP phosphopeptide complex at 1.15 a resolution Acta crystallogr. Sect. F Struct. Biol. Cryst. Commun., 66 (2010),pp. 978-984
    [80] Sehgal, L., Mukhopadhyay, A., Rajan, A. et al. J. Cell Sci., 127 (2014),pp. 2174-2188
    [81] Skjevik, A.A., Mileni, M., Baumann, A. et al. The N-terminal sequence of tyrosine hydroxylase is a conformationally versatile motif that binds 14-3-3 proteins and membranes J. Mol. Biol., 426 (2014),pp. 150-168
    [82] Sluchanko, N.N., Artemova, N.V., Sudnitsyna, M.V. et al. Monomeric 14-3-3zeta has a chaperone-like activity and is stabilized by phosphorylated HspB6 Biochemistry, 51 (2012),pp. 6127-6138
    [83] Sluchanko, N.N., Uversky, V.N. Hidden disorder propensity of the N-terminal segment of universal adapter protein 14-3-3 is manifested in its monomeric form: novel insights into protein dimerization and multifunctionality Biochem. Biophys. Acta, 1854 (2015),pp. 492-504
    [84] Takala, H., Nurminen, E., Nurmi, S.M. et al. Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding Blood, 112 (2008),pp. 1853-1862
    [85] Thiel, P., Roglin, L., Meissner, N. et al. Virtual screening and experimental validation reveal novel small-molecule inhibitors of 14-3-3 protein-protein interactions Chem. Commun., 49 (2013),pp. 8468-8470
    [86] Tinti, M., Johnson, C., Toth, R. et al. Evolution of signal multiplexing by 14-3-3-binding 2R-ohnologue protein families in the vertebrates Open Biol., 2 (2012),p. 120103
    [87] Tinti, M., Madeira, F., Murugesan, G. et al. ANIA: ANnotation and Integrated Analysis of the 14-3-3 interactome Database (Oxford), 2014 (2014)
    [88] Trembley, M.A., Berrus, H.L., Whicher, J.R. et al. The yeast 14-3-3 proteins Bmh1 and Bmh2 differentially regulate rapamycin-mediated transcription Biosci. Rep., 34 (2014)
    [89] Uhart, M., Bustos, D.M. Human 14-3-3 paralogs differences uncovered by cross-talk of phosphorylation and lysine acetylation PLoS One, 8 (2013),p. e55703
    [90] Wanzel, M., Kleine-Kohlbrecher, D., Herold, S. et al. Akt and 14-3-3eta regulate Miz1 to control cell-cycle arrest after DNA damage Nat. Cell Biol., 7 (2005),pp. 30-41
    [91] Wilker, E.W., Grant, R.A., Artim, S.C. et al. A structural basis for 14-3-3sigma functional specificity J. Biol. Chem., 280 (2005),pp. 18891-18898
    [92] Xu, C., Jin, J., Bian, C. et al. Sequence-specific recognition of a PxLPxI/L motif by an ankyrin repeat tumbler lock Sci. Signal., 5 (2012),p. ra39
    [93] Yaffe, M.B., Rittinger, K., Volinia, S. et al. The structural basis for 14-3-3:phosphopeptide binding specificity Cell, 91 (1997),pp. 961-971
    [94] Yang, X., Cao, W., Lin, H. et al. Isoform-specific expression of 14-3-3 proteins in human astrocytoma J. Neurol. Sci., 276 (2009),pp. 54-59
    [95] Yang, X., Lee, W.H., Sobott, F. et al. Structural basis for protein-protein interactions in the 14-3-3 protein family Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 17237-17242
    [96] Yu, M., Guo, H.X., Hui, C. et al. 14-3-3 zeta interacts with hepatocyte nuclear factor 1alpha and enhances its DNA binding and transcriptional activation Biochim. Biophys. Acta, 1829 (2013),pp. 970-979
    [97] Zhao, J., Du, Y., Horton, J.R. et al. Discovery and structural characterization of a small molecule 14-3-3 protein-protein interaction inhibitor Proc. Natl. Acad. Sci. USA, 108 (2011),pp. 16212-16216
    [98] Zhao, J., Meyerkord, C.L., Du, Y. et al. 14-3-3 proteins as potential therapeutic targets Semin. Cell. Dev. Biol., 22 (2011),pp. 705-712
    [99] Zoete, V., Irving, M.B., Michielin, O. MM-GBSA binding free energy decomposition and T cell receptor engineering J. Mol. Recog., 23 (2010),pp. 142-152
  • 加载中
计量
  • 文章访问数:  89
  • HTML全文浏览量:  25
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-08
  • 录用日期:  2015-09-03
  • 修回日期:  2015-09-03
  • 网络出版日期:  2015-09-14
  • 刊出日期:  2015-10-20

目录

    /

    返回文章
    返回