留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9

Jinjie Zhu Ning Song Silong Sun Weilong Yang Haiming Zhao Weibin Song Jinsheng Lai

Jinjie Zhu, Ning Song, Silong Sun, Weilong Yang, Haiming Zhao, Weibin Song, Jinsheng Lai. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9[J]. Journal of Genetics and Genomics, 2016, 43(1): 25-36. doi: 10.1016/j.jgg.2015.10.006
Citation: Jinjie Zhu, Ning Song, Silong Sun, Weilong Yang, Haiming Zhao, Weibin Song, Jinsheng Lai. Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9[J]. Journal of Genetics and Genomics, 2016, 43(1): 25-36. doi: 10.1016/j.jgg.2015.10.006

doi: 10.1016/j.jgg.2015.10.006

Efficiency and Inheritance of Targeted Mutagenesis in Maize Using CRISPR-Cas9

More Information
    Corresponding author: E-mail address: jlai@cau.edu.cn (Jinsheng Lai)
  • These authors contributed equally to this work.
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
    These authors contributed equally to this work.
  • [1] Ainley, W.M., Sastry-Dent, L., Welter, M.E. et al. Plant Biotechnol. J., 11 (2013),pp. 1126-1134
    [2] Brooks, C., Nekrasov, V., Lippman, Z.B. et al. Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system Plant Physiol., 166 (2014),pp. 1292-1297
    [3] Buckner, B., Kelson, T.L., Robertson, D.S. Plant Cell, 2 (1990),pp. 867-876
    [4] Buckner, B., San Miguel, P., Janick-Buckner, D. et al. Genetics, 143 (1996),pp. 479-488
    [5] Campbell, F., Setzer, D.R. Transcription termination by RNA polymerase III: uncoupling of polymerase release from termination signal recognition Mol. Cell. Biol., 12 (1992),pp. 2260-2272
    [6] Char, S.N., Unger-Wallace, E., Frame, B. et al. Heritable site-specific mutagenesis using TALENs in maize Plant Biotechnol. J., 13 (2015),pp. 1002-1010
    [7] Choulet, F., Alberti, A., Theil, S. et al. Structural and functional partitioning of bread wheat chromosome 3B Science, 345 (2014),p. 1249721
    [8] Christian, M., Cermak, T., Doyle, E.L. et al. Targeting DNA double-strand breaks with TAL effector nucleases Genetics, 186 (2010),pp. 757-761
    [9] Christian, M., Qi, Y., Zhang, Y. et al. G3, 3 (2013),pp. 1697-1705
    [10] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [11] Curtin, S.J., Zhang, F., Sander, J.D. et al. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiol., 156 (2011),pp. 466-473
    [12] Das, G., Henning, D., Wright, D. et al. Upstream regulatory elements are necessary and sufficient for transcription of a U6 RNA gene by RNA polymerase III EMBO J., 7 (1988),pp. 503-512
    [13] Feng, Z., Mao, Y., Xu, N. et al. Proc. Natl. Acad. Sci. USA, 111 (2014),pp. 4632-4637
    [14] Feng, Z.Y., Zhang, B.T., Ding, W.N. et al. Efficient genome editing in plants using a CRISPR/Cas system Cell Res., 23 (2013),pp. 1229-1232
    [15] Fu, Y., Foden, J.A., Khayter, C. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol., 31 (2013),pp. 822-826
    [16] Garneau, J.E., Dupuis, M.-È., Villion, M. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA Nature, 468 (2010),pp. 67-71
    [17] Goff, S.A., Ricke, D., Lan, T.-H. et al. Science, 296 (2002),pp. 92-100
    [18] Haun, W., Coffman, A., Clasen, B.M. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnol. J., 12 (2014),pp. 934-940
    [19] Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [20] Jacobs, T.B., LaFayette, P.R., Schmitz, R.J. et al. Targeted genome modifications in soybean with CRISPR/Cas9 BMC Biotechnol., 15 (2015),p. 16
    [21] Jia, H., Wang, N. Targeted genome editing of sweet orange using Cas9/sgRNA PLoS One, 9 (2014),p. e93806
    [22] Jia, J., Zhao, S., Kong, X. et al. Nature, 496 (2013),pp. 91-95
    [23] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [24] Kim, Y.-G., Cha, J., Chandrasegaran, S. Proc. Natl. Acad. Sci. USA, 93 (1996),pp. 1156-1160
    [25] Kuscu, C., Arslan, S., Singh, R. et al. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease Nat. Biotechnol., 32 (2014),pp. 677-683
    [26] Lees-Miller, S., Meek, K. Repair of DNA double strand breaks by non-homologous end joining Biochimie, 85 (2003),pp. 1161-1173
    [27] Li, J.-F., Norville, J.E., Aach, J. et al. Nat. Biotechnol., 31 (2013),pp. 688-691
    [28] Li, T., Liu, B., Spalding, M.H. et al. High-efficiency TALEN-based gene editing produces disease-resistant rice Nat. Biotechnol., 30 (2012),pp. 390-392
    [29] Liang, Z., Zhang, K., Chen, K. et al. J. Genet. Genomics, 41 (2014),pp. 63-68
    [30] Ling, H.-Q., Zhao, S., Liu, D. et al. Nature, 496 (2013),pp. 87-90
    [31] Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [32] Mao, Y., Zhang, H., Xu, N. et al. Application of the CRISPR-Cas system for efficient genome engineering in plants Mol. Plant, 6 (2013),pp. 2008-2011
    [33] Marraffini, L.A., Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea Nat. Rev. Genet., 11 (2010),pp. 181-190
    [34] McVey, M., Lee, S.E. MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings Trends Genet., 24 (2008),pp. 529-538
    [35] Miao, J., Guo, D., Zhang, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system Cell Res., 23 (2013),p. 1233
    [36] Miller, J.C., Tan, S., Qiao, G. et al. A TALE nuclease architecture for efficient genome editing Nat. Biotechnol., 29 (2011),pp. 143-148
    [37] Nekrasov, V., Staskawicz, B., Weigel, D. et al. Nat. Biotechnol., 31 (2013),pp. 691-693
    [38] Osakabe, K., Osakabe, Y., Toki, S. Proc. Natl. Acad. Sci. USA, 107 (2010),pp. 12034-12039
    [39] Park, J., Kunkel, G.R. Biochem. Biophys. Res. Commun., 214 (1995),pp. 934-940
    [40] Pattanayak, V., Lin, S., Guilinger, J.P. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity Nat. Biotechnol., 31 (2013),pp. 839-843
    [41] Schmutz, J., Cannon, S.B., Schlueter, J. et al. Genome sequence of the palaeopolyploid soybean Nature, 463 (2010),pp. 178-183
    [42] Schnable, P.S., Ware, D., Fulton, R.S. et al. The B73 maize genome: complexity, diversity, and dynamics Science, 326 (2009),pp. 1112-1115
    [43] Shan, Q., Wang, Y., Chen, K. et al. Mol. Plant, 6 (2013),pp. 1365-1368
    [44] Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [45] Shukla, V.K., Doyon, Y., Miller, J.C. et al. Nature, 459 (2009),pp. 437-441
    [46] Sugano, S.S., Shirakawa, M., Takagi, J. et al. Plant Cell Physiol., 55 (2014),pp. 475-481
    [47] Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [48] Veretnik, S., Rubenstein, I. Nucleotide sequence of a maize U6 gene Nucleic Acids Res., 18 (1990)
    [49] Wang, S., Zhang, S., Wang, W. et al. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system Plant Cell Rep., 34 (2015),pp. 1473-1476
    [50] Wang, Y.P., Cheng, X., Shan, Q.W. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [51] Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
    [52] Wu, X., Scott, D.A., Kriz, A.J. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells Nat. Biotechnol., 32 (2014),pp. 670-676
    [53] Wyman, C., Ristic, D., Kanaar, R. Homologous recombination-mediated double-strand break repair DNA Repair, 3 (2004),pp. 827-833
    [54] Xie, K., Yang, Y. RNA-guided genome editing in plants using a CRISPR–Cas system Mol. Plant, 6 (2013),pp. 1975-1983
    [55] Xing, H.L., Li, D., Wang, Z.P. et al. A CRISPR/Cas9 toolkit for multiplex genome editing in plants BMC Plant Biol., 14 (2014)
    [56] Yoo, S.-D., Cho, Y.-H., Sheen, J. Nat. Protoc., 2 (2007),pp. 1565-1572
    [57] Zecherle, G.N., Whelen, S., Hall, B.D. Purines are required at the 5′ ends of newly initiated RNAs for optimal RNA polymerase III gene expression Mol. Cell. Biol., 16 (1996),pp. 5801-5810
    [58] Zhu, T., Peterson, D.J., Tagliani, L. et al. Proc. Natl. Acad. Sci. USA, 96 (1999),pp. 8768-8773
  • 加载中
计量
  • 文章访问数:  221
  • HTML全文浏览量:  94
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-30
  • 录用日期:  2015-10-29
  • 修回日期:  2015-10-27
  • 网络出版日期:  2015-12-21
  • 刊出日期:  2016-01-20

目录

    /

    返回文章
    返回