留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network

Olfat Al-Harazi Sadiq Al Insaif Monirah A. Al-Ajlan Namik Kaya Nduna Dzimiri Dilek Colak

Olfat Al-Harazi, Sadiq Al Insaif, Monirah A. Al-Ajlan, Namik Kaya, Nduna Dzimiri, Dilek Colak. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network[J]. Journal of Genetics and Genomics, 2016, 43(6): 349-367. doi: 10.1016/j.jgg.2015.11.002
Citation: Olfat Al-Harazi, Sadiq Al Insaif, Monirah A. Al-Ajlan, Namik Kaya, Nduna Dzimiri, Dilek Colak. Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network[J]. Journal of Genetics and Genomics, 2016, 43(6): 349-367. doi: 10.1016/j.jgg.2015.11.002

doi: 10.1016/j.jgg.2015.11.002

Integrated Genomic and Network-Based Analyses of Complex Diseases and Human Disease Network

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Adie, E.A., Adams, R.R., Evans, K.L. et al. SUSPECTS: enabling fast and effective prioritization of positional candidates Bioinformatics, 22 (2006),pp. 773-774
    [2] Aerts, S., Lambrechts, D., Maity, S. et al. Gene prioritization through genomic data fusion Nat. Biotechnol., 24 (2006),pp. 537-544
    [3] Akavia, U.D., Litvin, O., Kim, J. et al. An integrated approach to uncover drivers of cancer Cell, 143 (2010),pp. 1005-1017
    [4] Alon, N., Yuster, R., Zwick, U. Color-coding J. ACM, 42 (1995),pp. 844-856
    [5] Amar, D., Shamir, R. Constructing module maps for integrated analysis of heterogeneous biological networks Nucleic Acids Res., 42 (2014),pp. 4208-4219
    [6] Amberger, J.S., Bocchini, C.A., Schiettecatte, F. et al. Nucleic Acids Res., 43 (2015),pp. D789-D798
    [7] Backes, C., Rurainski, A., Klau, G.W. et al. An integer linear programming approach for finding deregulated subgraphs in regulatory networks Nucleic Acids Res., 40 (2012),p. e43
    [8] Bader, J.S. Greedily building protein networks with confidence Bioinformatics, 19 (2003),pp. 1869-1874
    [9] Bair, E., Tibshirani, R. Semi-supervised methods to predict patient survival from gene expression data PLoS Biol., 2 (2004),p. e108
    [10] Barabási, A.-L., Gulbahce, N., Loscalzo, J. Network medicine: a network-based approach to human disease Nat. Rev. Genet., 12 (2011),pp. 56-68
    [11] Barrenas, F., Chavali, S., Holme, P. et al. Network properties of complex human disease genes identified through genome-wide association studies PLoS One, 4 (2009),p. e8090
    [12] Bastian, M., Heymann, S., Jacomy, M. Gephi: an open source software for exploring and manipulating networks ICWSM, 8 (2009),pp. 361-362
    [13] Batagelj, V., Mrvar, A.
    [14] Bauer-Mehren, A., Bundschus, M., Rautschka, M. et al. Gene-disease network analysis reveals functional modules in Mendelian, complex and environmental diseases PLoS One, 6 (2011),p. e20284
    [15] Bauer-Mehren, A., Rautschka, M., Sanz, F. et al. DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks Bioinformatics, 26 (2010),pp. 2924-2926
    [16] Beagley, N., Stratton, K.G., Webb-Robertson, B.-J.M. VIBE 2.0: visual integration for Bayesian evaluation Bioinformatics, 26 (2010),pp. 280-282
    [17] Becker, K.G., Barnes, K.C., Bright, T.J. et al. The genetic association database Nat. Genet., 36 (2004),pp. 431-432
    [18] Beisser, D., Klau, G.W., Dandekar, T. et al. BioNet: an R-Package for the functional analysis of biological networks Bioinformatics, 26 (2010),pp. 1129-1130
    [19] Berger, S.I., Iyengar, R., Ma’ayan, A. AVIS: AJAX viewer of interactive signaling networks Bioinformatics, 23 (2007),pp. 2803-2805
    [20] Bonetta, L. Protein–protein interactions: interactome under construction Nature, 468 (2010),pp. 851-854
    [21] Breitkreutz, B.-J., Stark, C., Tyers, M. Osprey: a network visualization system Genome Biol., 4 (2003),p. R22
    [22] Brown, K.R., Jurisica, I. Online predicted human interaction database Bioinformatics, 21 (2005),pp. 2076-2082
    [23] Brown, K.R., Otasek, D., Ali, M. et al. NAViGaTOR: network analysis, visualization and graphing Toronto Bioinformatics, 25 (2009),pp. 3327-3329
    [24] Bundschus, M., Dejori, M., Stetter, M. et al. Extraction of semantic biomedical relations from text using conditional random fields BMC Bioinformatics, 9 (2008),p. 207
    [25] Butte, A.J. Medicine. The ultimate model organism Science, 320 (2008),pp. 325-327
    [26] Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R. et al. The BioGRID interaction database: 2015 update Nucleic Acids Res., 43 (2015),pp. D470-D478
    [27] Chen, H., Zhang, Z. Similarity-based methods for potential human microRNA-disease association prediction BMC Med. Genomics, 6 (2013),p. 12
    [28] Chen, J., Aronow, B.J., Jegga, A.G. Disease candidate gene identification and prioritization using protein interaction networks BMC Bioinformatics, 10 (2009),p. 73
    [29] Chen, J., Xu, H., Aronow, B.J. et al. Improved human disease candidate gene prioritization using mouse phenotype BMC Bioinformatics, 8 (2007),p. 392
    [30] Chen, L., Xuan, J., Riggins, R.B. et al. Identifying protein interaction subnetworks by a bagging Markov random field-based method Nucleic Acids Res., 41 (2013),p. e42
    [31] Chuang, H.Y., Lee, E., Liu, Y.T. et al. Network-based classification of breast cancer metastasis Mol. Syst. Biol., 3 (2007),p. 140
    [32] Chuang, H.Y., Rassenti, L., Salcedo, M. et al. Subnetwork-based analysis of chronic lymphocytic leukemia identifies pathways that associate with disease progression Blood, 120 (2012),pp. 2639-2649
    [33] Colak, D., Al-Dhalaan, H., Nester, M. et al. Genomic and transcriptomic analyses distinguish classic Rett and Rett-like syndrome and reveals shared altered pathways Genomics, 97 (2011),pp. 19-28
    [34] Colak, D., Chishti, M.A., Al-Bakheet, A.B. et al. Integrative and comparative genomics analysis of early hepatocellular carcinoma differentiated from liver regeneration in young and old Mol. Cancer, 9 (2010),p. 146
    [35] Colak, D., Kaya, N., Al-Zahrani, J. et al. Left ventricular global transcriptional profiling in human end-stage dilated cardiomyopathy Genomics, 94 (2009),pp. 20-31
    [36] Costa Pereira, J., Coviello, E., Doyle, G. et al. On the role of correlation and abstraction in cross-modal multimedia retrieval IEEE Trans. Pattern Anal. Mach. Intell., 36 (2014),pp. 521-535
    [37] Cotney, J., Muhle, R.A., Sanders, S.J. et al. The autism-associated chromatin modifier CHD8 regulates other autism risk genes during human neurodevelopment Nat. Commun., 6 (2015),p. 6404
    [38] Cozzini, A., Jasra, A., Montana, G. Model-based clustering with gene ranking using penalized mixtures of heavy-tailed distributions J. Bioinform. Comput. Biol., 11 (2013),p. 1341007
    [39] Croft, D., Mundo, A.F., Haw, R. et al. The reactome pathway knowledgebase Nucleic Acids Res., 42 (2014),pp. D472-D477
    [40] Dal Moro, F., Abate, A., Lanckriet, G.R. et al. A novel approach for accurate prediction of spontaneous passage of ureteral stones: support vector machines Kidney Int., 69 (2006),pp. 157-160
    [41] Dannenfelser, R., Clark, N.R., Ma'ayan, A. Genes2FANs: connecting genes through functional association networks BMC Bioinformatics, 13 (2012),p. 156
    [42] Dao, P., Wang, K., Collins, C. et al. Optimally discriminative subnetwork markers predict response to chemotherapy Bioinformatics, 27 (2011),pp. i205-i213
    [43] Daraselia, N., Yuryev, A., Egorov, S. et al. Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks BMC Bioinformatics, 8 (2007),p. 243
    [44] Dave, S.S. Gene expression signatures and outcome prediction in mature B-cell malignancies Curr. Treat Options Oncol., 7 (2006),pp. 261-269
    [45] Dave, S.S., Fu, K., Wright, G.W. et al. Molecular diagnosis of Burkitt's lymphoma N. Engl. J. Med., 354 (2006),pp. 2431-2442
    [46] Davis, A.P., Grondin, C.J., Lennon-Hopkins, K. et al. The comparative toxicogenomics database's 10th year anniversary: update 2015 Nucleic Acids Res., 43 (2015),pp. D914-D920
    [47] de Matos Simoes, R., Emmert-Streib, F. Bagging statistical network inference from large-scale gene expression data PLoS One, 7 (2012),p. e33624
    [48] Dezső, Z., Nikolsky, Y., Nikolskaya, T. et al. Identifying disease-specific genes based on their topological significance in protein networks BMC Syst. Biol., 3 (2009),p. 36
    [49] Diez, D., Wheelock, A.M., Goto, S. et al. The use of network analyses for elucidating mechanisms in cardiovascular disease Mol. Biosyst., 6 (2010),pp. 289-304
    [50] Ding, Y., Chen, M., Liu, Z. et al. atBioNet–an integrated network analysis tool for genomics and biomarker discovery BMC Genomics, 13 (2012),p. 325
    [51] Enright, A.J., Van Dongen, S., Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families Nucleic Acids Res., 30 (2002),pp. 1575-1584
    [52] Eppig, J.T., Blake, J.A., Bult, C.J. et al. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse Nucleic Acids Res., 40 (2012),pp. D881-D886
    [53] Ergun, A., Lawrence, C.A., Kohanski, M.A. et al. A network biology approach to prostate cancer Mol. Syst. Biol., 3 (2007),p. 82
    [54] Erten, S., Chowdhury, S.A., Guan, X. et al. Identifying stage-specific protein subnetworks for colorectal cancer BMC Proc., 6 (2012),p. S1
    [55] Ewing, R.M., Chu, P., Elisma, F. et al. Large-scale mapping of human protein–protein interactions by mass spectrometry Mol. Syst. Biol., 3 (2007),p. 89
    [56] Finak, G., Bertos, N., Pepin, F. et al. Stromal gene expression predicts clinical outcome in breast cancer Nat. Med., 14 (2008),pp. 518-527
    [57] Formstecher, E., Aresta, S., Collura, V. et al. Genome Res., 15 (2005),pp. 376-384
    [58] Franceschini, A., Szklarczyk, D., Frankild, S. et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration Nucleic Acids Res., 41 (2013),pp. D808-D815
    [59] Franke, L., Van Bakel, H., Fokkens, L. et al. Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes Am. J. Hum. Genet., 78 (2006),p. 1011
    [60] Frey, B.J., Dueck, D. Clustering by passing messages between data points Science, 315 (2007),pp. 972-976
    [61] Gao, S., Wang, X. Identification of highly synchronized subnetworks from gene expression data BMC Bioinformatics, 14 (2013),p. S5
    [62] Garcia-Garcia, J., Guney, E., Aragues, R. et al. Biana: a software framework for compiling biological interactions and analyzing networks BMC Bioinformatics, 11 (2010),p. 56
    [63] Garraway, L.A., Widlund, H.R., Rubin, M.A. et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma Nature, 436 (2005),pp. 117-122
    [64] Gillis, J., Pavlidis, P. “Guilt by association” is the exception rather than the rule in gene networks PLoS Comput. Biol., 8 (2012),p. e1002444
    [65] Glaab, E., Baudot, A., Krasnogor, N. et al. EnrichNet: network-based gene set enrichment analysis Bioinformatics, 28 (2012),pp. i451-i457
    [66] Glass, K., Huttenhower, C., Quackenbush, J. et al. Passing messages between biological networks to refine predicted interactions PLoS One, 8 (2013),p. e64832
    [67] Goh, K.I., Cusick, M.E., Valle, D. et al. The human disease network Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 8685-8690
    [68] Green, P.J., Richardson, S. Modelling heterogeneity with and without the dirichlet process Scand. J. Stat., 28 (2001),pp. 355-375
    [69] Güldener, U., Münsterkötter, M., Oesterheld, M. et al. MPact: the MIPS protein interaction resource on yeast Nucleic Acids Res., 34 (2006),pp. D436-D441
    [70] Guney, E., Oliva, B. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization PLoS One, 7 (2012),p. e43557
    [71] Guo, Z., Li, Y., Gong, X. et al. Edge-based scoring and searching method for identifying condition-responsive protein–protein interaction sub-network Bioinformatics, 23 (2007),pp. 2121-2128
    [72] Haibe-Kains, B., Olsen, C., Djebbari, A. et al. Predictive networks: a flexible, open source, web application for integration and analysis of human gene networks Nucleic Acids Res., 40 (2012),pp. D866-D875
    [73] Han, K., Park, B., Kim, H. et al. HPID: the Human Protein Interaction Database Bioinformatics, 20 (2004),pp. 2466-2470
    [74] Hayasaka, S., Hugenschmidt, C.E., Laurienti, P.J. A network of genes, genetic disorders, and brain areas PLoS One, 6 (2011),p. e20907
    [75] He, Z., Zhang, J., Shi, X.-H. et al. Predicting drug-target interaction networks based on functional groups and biological features PLoS One, 5 (2010),p. e9603
    [76] Hedenfalk, I., Duggan, D., Chen, Y. et al. Gene-expression profiles in hereditary breast cancer N. Engl. J. Med., 344 (2001),pp. 539-548
    [77] Hidalgo, C.A., Blumm, N., Barabasi, A.L. et al. A dynamic network approach for the study of human phenotypes PLoS Comput. Biol., 5 (2009),p. e1000353
    [78] Ho, C.Y., Seidman, C.E. A contemporary approach to hypertrophic cardiomyopathy Circulation, 113 (2006),pp. e858-862
    [79] Hooper, S.D., Bork, P. Medusa: a simple tool for interaction graph analysis Bioinformatics, 21 (2005),pp. 4432-4433
    [80] Hu, G., Agarwal, P. Human disease-drug network based on genomic expression profiles PLoS One, 4 (2009),p. e6536
    [81] Hu, Z., Mellor, J., Wu, J. et al. VisANT: an online visualization and analysis tool for biological interaction data BMC Bioinformatics, 5 (2004),p. 17
    [82] Huttenhower, C., Schroeder, M., Chikina, M.D. et al. The Sleipnir library for computational functional genomics Bioinformatics, 24 (2008),pp. 1559-1561
    [83] Ideker, T., Ozier, O., Schwikowski, B. et al. Discovering regulatory and signalling circuits in molecular interaction networks Bioinformatics (2002),pp. S233-S240
    [84] Ideker, T., Sharan, R. Protein networks in disease Genome Res., 18 (2008),pp. 644-652
    [85] Isserlin, R., El-Badrawi, R.A., Bader, G.D. The biomolecular interaction network database in PSI-MI 2.5 Database (Oxford), 2011 (2011)
    [86] Jensen, F.V.
    [87] Jia, P., Zheng, S., Long, J. et al. dmGWAS: dense module searching for genome-wide association studies in protein–protein interaction networks Bioinformatics, 27 (2011),pp. 95-102
    [88] Jiang, B., Gribskov, M. Assessment of subnetwork detection methods for breast cancer Cancer Inform., 13 (2014),p. 15
    [89] Jiang, C., Xuan, Z., Zhao, F. et al. TRED: a transcriptional regulatory element database, new entries and other development Nucleic Acids Res., 35 (2007),pp. D137-D140
    [90] Joyce, A.R., Palsson, B.O. The model organism as a system: integrating ‘omics’ data sets Nat. Rev. Mol. Cell Biol., 7 (2006),pp. 198-210
    [91] Kacprowski, T., Doncheva, N.T., Albrecht, M. NetworkPrioritizer: a versatile tool for network-based prioritization of candidate disease genes or other molecules Bioinformatics, 29 (2013),pp. 1471-1473
    [92] Kanehisa, M., Goto, S., Sato, Y. et al. Data, information, knowledge and principle: back to metabolism in KEGG Nucleic Acids Res., 42 (2014),pp. D199-D205
    [93] Kang, H.J., Kawasawa, Y.I., Cheng, F. et al. Spatio-temporal transcriptome of the human brain Nature, 478 (2011),pp. 483-489
    [94] Kerrien, S., Orchard, S., Montecchi-Palazzi, L. et al. Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions BMC Biol., 5 (2007),p. 44
    [95] Kim, Y., Kim, T.-K., Kim, Y. et al. Principal network analysis: identification of subnetworks representing major dynamics using gene expression data Bioinformatics, 27 (2011),pp. 391-398
    [96] King, A.D., Pržulj, N., Jurisica, I. Bioinformatics, 20 (2004),pp. 3013-3020
    [97] Kirk, P., Griffin, J.E., Savage, R.S. et al. Bayesian correlated clustering to integrate multiple datasets Bioinformatics, 28 (2012),pp. 3290-3297
    [98] Köhler, J., Baumbach, J., Taubert, J. et al. Graph-based analysis and visualization of experimental results with ONDEX Bioinformatics, 22 (2006),pp. 1383-1390
    [99] Köhler, S., Bauer, S., Horn, D. et al. Walking the interactome for prioritization of candidate disease genes Am. J. Hum. Genet., 82 (2008),p. 949
    [100] Komurov, K., Dursun, S., Erdin, S. et al. NetWalker: a contextual network analysis tool for functional genomics BMC Genomics, 13 (2012),p. 282
    [101] Komurov, K., White, M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network Mol. Syst. Biol., 3 (2007),p. 110
    [102] Lage, K., Karlberg, E.O., Størling, Z.M. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders Nat. Biotechnol., 25 (2007),pp. 309-316
    [103] Lanckriet, G.R., De Bie, T., Cristianini, N. et al. A statistical framework for genomic data fusion Bioinformatics, 20 (2004),pp. 2626-2635
    [104] Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis BMC Bioinformatics, 9 (2008),p. 559
    [105] Larkin, J.E., Frank, B.C., Gaspard, R.M. et al. Cardiac transcriptional response to acute and chronic angiotensin II treatments Physiol. Genomics, 18 (2004),pp. 152-166
    [106] Le, D.H., Kwon, Y.K. Neighbor-favoring weight reinforcement to improve random walk-based disease gene prioritization Comput. Biol. Chem., 44 (2013),pp. 1-8
    [107] Lee, D.S., Park, J., Kay, K.A. et al. The implications of human metabolic network topology for disease comorbidity Proc. Natl. Acad. Sci. USA, 105 (2008),pp. 9880-9885
    [108] Lee, I., Blom, U.M., Wang, P.I. et al. Prioritizing candidate disease genes by network-based boosting of genome-wide association data Genome Res., 21 (2011),pp. 1109-1121
    [109] Lee, I., Date, S.V., Adai, A.T. et al. A probabilistic functional network of yeast genes Science, 306 (2004),pp. 1555-1558
    [110] Lee, W.P., Tzou, W.S. Computational methods for discovering gene networks from expression data Brief. Bioinform., 10 (2009),pp. 408-423
    [111] Li, G.-L., Xu, X.-H., Wang, B.-A. et al. Analysis of protein-protein interaction network and functional modules on primary osteoporosis Eur. J. Med. Res., 19 (2014),p. 15
    [112] Li, Y., Agarwal, P. A pathway-based view of human diseases and disease relationships PLoS One, 4 (2009),p. e4346
    [113] Licata, L., Briganti, L., Peluso, D. et al. MINT, the molecular interaction database: 2012 update Nucleic Acids Res., 40 (2012),pp. D857-D861
    [114] Lichtenstein, I., Charleston, M.A., Caetano, T.S. et al. Active subnetwork recovery with a mechanism-dependent scoring function; with application to angiogenesis and organogenesis studies BMC Bioinformatics, 14 (2013),p. 59
    [115] Linghu, B., Snitkin, E.S., Hu, Z. et al. Genome-wide prioritization of disease genes and identification of disease-disease associations from an integrated human functional linkage network Genome Biol., 10 (2009),p. R91
    [116] Liu, G., Wong, L., Chua, H.N. Complex discovery from weighted PPI networks Bioinformatics, 25 (2009),pp. 1891-1897
    [117] Liu, K.Q., Liu, Z.P., Hao, J.K. et al. Identifying dysregulated pathways in cancers from pathway interaction networks BMC Bioinformatics, 13 (2012),p. 126
    [118] Liu, Y., Koyuturk, M., Barnholtz-Sloan, J.S. et al. Gene interaction enrichment and network analysis to identify dysregulated pathways and their interactions in complex diseases BMC Syst. Biol., 6 (2012),p. 65
    [119] Loscalzo, J., Kohane, I., Barabasi, A.L. Human disease classification in the postgenomic era: a complex systems approach to human pathobiology Mol. Syst. Biol., 3 (2007),p. 124
    [120] Lu, L.J., Xia, Y., Paccanaro, A. et al. Assessing the limits of genomic data integration for predicting protein networks Genome Res., 15 (2005),pp. 945-953
    [121] Lu, M., Zhang, Q., Deng, M. et al. An analysis of human microRNA and disease associations PLoS One, 3 (2008),p. e3420
    [122] Macropol, K., Can, T., Singh, A.K. RRW: repeated random walks on genome-scale protein networks for local cluster discovery BMC Bioinformatics, 10 (2009),p. 283
    [123] Madhamshettiwar, P.B., Maetschke, S.R., Davis, M.J. et al. RMaNI: regulatory module network inference framework BMC Bioinformatics, 14 (2013),p. S14
    [124] Mi, H., Muruganujan, A., Thomas, P.D. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees Nucleic Acids Res., 41 (2013),pp. D377-D386
    [125] Mitra, K., Carvunis, A.-R., Ramesh, S.K. et al. Integrative approaches for finding modular structure in biological networks Nat. Rev. Genet., 14 (2013),pp. 719-732
    [126] Narayanan, M., Vetta, A., Schadt, E.E. et al. Simultaneous clustering of multiple gene expression and physical interaction datasets PLoS Comput. Biol., 6 (2010),p. e1000742
    [127] Nayak, L., Tunga, H., De, R.K. Disease co-morbidity and the human Wnt signaling pathway: a network-wise study OMICS, 17 (2013),pp. 318-337
    [128] Nepusz, T., Yu, H., Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks Nat. Methods, 9 (2012),pp. 471-472
    [129] Newman, M.E., Girvan, M. Finding and evaluating community structure in networks Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 69 (2004),p. 026113
    [130] Nguyen, T.P., Caberlotto, L., Morine, M.J. et al. Network analysis of neurodegenerative disease highlights a role of toll-like receptor signaling Biomed. Res. Int., 2014 (2014),p. 686505
    [131] Nibbe, R.K., Koyuturk, M., Chance, M.R. An integrative -omics approach to identify functional sub-networks in human colorectal cancer PLoS Comput. Biol., 6 (2010),p. e1000639
    [132] Oliver, S. Proteomics: guilt-by-association goes global Nature, 403 (2000),pp. 601-603
    [133] Orchard, S., Ammari, M., Aranda, B. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases Nucleic Acids Res., 42 (2014),pp. D358-D363
    [134] Oti, M., Snel, B., Huynen, M.A. et al. Predicting disease genes using protein–protein interactions J. Med. Genet., 43 (2006),pp. 691-698
    [135] Pagel, P., Kovac, S., Oesterheld, M. et al. The MIPS mammalian protein–protein interaction database Bioinformatics, 21 (2005),pp. 832-834
    [136] Palla, G., Derényi, I., Farkas, I. et al. Uncovering the overlapping community structure of complex networks in nature and society Nature, 435 (2005),pp. 814-818
    [137] Patil, M.A., Chua, M.S., Pan, K.H. et al. An integrated data analysis approach to characterize genes highly expressed in hepatocellular carcinoma Oncogene, 24 (2005),pp. 3737-3747
    [138] Pavlidis, P., Gillis, J. Progress and challenges in the computational prediction of gene function using networks: 2012-2013 update F1000Res., 2 (2013),p. 230
    [139] Pavlopoulos, G.A., O'Donoghue, S.I., Satagopam, V.P. et al. Arena3D: visualization of biological networks in 3D BMC Syst. Biol., 2 (2008),p. 104
    [140] Peng, H., Long, F., Ding, C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans. Pattern Anal. Mach. Intell., 27 (2005),pp. 1226-1238
    [141] Pollack, J.R., Sorlie, T., Perou, C.M. et al. Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors Proc. Natl. Acad. Sci. USA, 99 (2002),pp. 12963-12968
    [142] Prasad, T.K., Goel, R., Kandasamy, K. et al. Human protein reference database—2009 update Nucleic Acids Res., 37 (2009),pp. D767-D772
    [143] Pujana, M.A., Han, J.-D.J., Starita, L.M. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction Nat. Genet., 39 (2007),pp. 1338-1349
    [144] Pyatnitskiy, M., Mazo, I., Shkrob, M. et al. Clustering gene expression regulators: new approach to disease subtyping PLoS One, 9 (2014),p. e84955
    [145] Qian, L., Zheng, H., Zhou, H. et al. PLoS One, 8 (2013),p. e58383
    [146] Ray, M., Ruan, J., Zhang, W. Variations in the transcriptome of Alzheimer's disease reveal molecular networks involved in cardiovascular diseases Genome Biol., 9 (2008),p. R148
    [147] Reilly, S.K., Yin, J., Ayoub, A.E. et al. Evolutionary changes in promoter and enhancer activity during human corticogenesis Science, 347 (2015),pp. 1155-1159
    [148] Ren, G., Liu, Z. NetCAD: a network analysis tool for coronary artery disease-associated PPI network Bioinformatics, 29 (2013),pp. 279-280
    [149] Rivera, C.G., Vakil, R., Bader, J.S. NeMo: network module identification in Cytoscape BMC Bioinformatics, 11 (2010),p. S61
    [150] Rual, J.-F., Venkatesan, K., Hao, T. et al. Towards a proteome-scale map of the human protein–protein interaction network Nature, 437 (2005),pp. 1173-1178
    [151] Ruan, J., Dean, A.K., Zhang, W. A general co-expression network-based approach to gene expression analysis: comparison and applications BMC Syst. Biol., 4 (2010),p. 8
    [152] Ruan, J., Zhang, W. Identifying network communities with a high resolution Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 77 (2008),p. 016104
    [153] Rzhetsky, A., Wajngurt, D., Park, N. et al. Probing genetic overlap among complex human phenotypes Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 11694-11699
    [154] Saha, A., Tan, A.C., Kang, J. Automatic context-specific subnetwork discovery from large interaction networks PLoS One, 9 (2014),p. e84227
    [155] Saito, R., Smoot, M.E., Ono, K. et al. A travel guide to cytoscape plugins Nat. Methods, 9 (2012),pp. 1069-1076
    [156] Salwinski, L., Miller, C.S., Smith, A.J. et al. The database of interacting proteins: 2004 update Nucleic Acids Res., 32 (2004),pp. D449-D451
    [157] Sarajlic, A., Janjic, V., Stojkovic, N. et al. Network topology reveals key cardiovascular disease genes PLoS One, 8 (2013),p. e71537
    [158] Sarajlic, A., Przulj, N. Survey of network-based approaches to research of cardiovascular diseases Biomed Res. Int., 2014 (2014),p. 527029
    [159] Schaefer, C.F., Anthony, K., Krupa, S. et al. PID: the pathway interaction database Nucleic Acids Res., 37 (2009),pp. D674-D679
    [160] Shannon, P., Markiel, A., Ozier, O. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks Genome Res., 13 (2003),pp. 2498-2504
    [161] Shi, Z., Wang, J., Zhang, B. NetGestalt: integrating multidimensional omics data over biological networks Nat. Methods, 10 (2013),pp. 597-598
    [162] Singh, R., Park, D., Xu, J. et al. Struct2Net: a web service to predict protein–protein interactions using a structure-based approach Nucleic Acids Res., 38 (2010),pp. W508-W515
    [163] Sivachenko, A.Y., Yuryev, A., Daraselia, N. et al. Molecular networks in microarray analysis J. Bioinform. Comput. Biol., 5 (2007),pp. 429-456
    [164] Stelzl, U., Worm, U., Lalowski, M. et al. A human protein–protein interaction network: a resource for annotating the proteome Cell, 122 (2005),pp. 957-968
    [165] Stöckel, D., Müller, O., Kehl, T. et al. NetworkTrail—a web service for identifying and visualizing deregulated subnetworks Bioinformatics, 29 (2013),pp. 1702-1703
    [166] Sun, J., Pan, Y., Feng, X. et al. iBIG: an integrative network tool for supporting human disease mechanism studies Genomics Proteomics Bioinformatics, 11 (2013),pp. 166-171
    [167] Suthram, S., Dudley, J.T., Chiang, A.P. et al. Network-based elucidation of human disease similarities reveals common functional modules enriched for pluripotent drug targets PLoS Comput. Biol., 6 (2010),p. e1000662
    [168] Talwar, P., Silla, Y., Grover, S. et al. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease BMC Genomics, 15 (2014),p. 199
    [169] Taylor, I.W., Linding, R., Warde-Farley, D. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome Nat. Biotechnol., 27 (2009),pp. 199-204
    [170] Theocharidis, A., Van Dongen, S., Enright, A.J. et al. Network visualization and analysis of gene expression data using BioLayout Express3D Nat. Protoc., 4 (2009),pp. 1535-1550
    [171] Troyanskaya, O.G., Dolinski, K., Owen, A.B. et al. Proc. Natl. Acad. Sci. USA, 100 (2003),pp. 8348-8353
    [172] Tsiliki, G., Kossida, S. Fusion methodologies for biomedical data J. Proteom., 74 (2011),pp. 2774-2785
    [173] Turner, F.S., Clutterbuck, D.R., Semple, C.A. POCUS: mining genomic sequence annotation to predict disease genes Genome Biol., 4 (2003)
    [174] Tusher, V.G., Tibshirani, R., Chu, G. Significance analysis of microarrays applied to the ionizing radiation response Proc. Natl. Acad. Sci. USA, 98 (2001),pp. 5116-5121
    [175] Ulitsky, I., Maron-Katz, A., Shavit, S. et al. Expander: from expression microarrays to networks and functions Nat. Protoc., 5 (2010),pp. 303-322
    [176] Ummanni, R., Mundt, F., Pospisil, H. et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform PLoS One, 6 (2011),p. e16833
    [177] UniProt Consortium UniProt: a hub for protein information Nucleic Acids Res., 43 (2015),pp. D204-D212
    [178] van't Veer, L.J., Dai, H., van de Vijver, M.J. et al. Gene expression profiling predicts clinical outcome of breast cancer Nature, 415 (2002),pp. 530-536
    [179] Van den Akker, E.B., Verbruggen, B., Heijmans, B. et al. Integrating protein–protein interaction networks with gene–gene co-expression networks improves gene signatures for classifying breast cancer metastasis J. Integr. Bioinform., 8 (2011),p. 188
    [180] van Driel, M.A., Bruggeman, J., Vriend, G. et al. A text-mining analysis of the human phenome Eur. J. Hum. Genet., 14 (2006),pp. 535-542
    [181] Vandin, F., Upfal, E., Raphael, B.J. Algorithms for detecting significantly mutated pathways in cancer J. Comput. Biol., 18 (2011),pp. 507-522
    [182] Vanunu, O., Magger, O., Ruppin, E. et al. PLoS Comput. Biol., 6 (2010),p. e1000641
    [183] Vinh, N.X., Chetty, M., Coppel, R. et al. GlobalMIT: learning globally optimal dynamic bayesian network with the mutual information test criterion Bioinformatics, 27 (2011),pp. 2765-2766
    [184] Von Mering, C., Krause, R., Snel, B. et al. Comparative assessment of large-scale data sets of protein–protein interactions Nature, 417 (2002),pp. 399-403
    [185] Wang, Y., Thilmony, R., Gu, Y.Q. NetVenn: an integrated network analysis web platform for gene lists Nucleic Acids Res., 42 (2014),pp. W161-W166
    [186] Weile, J., James, K., Hallinan, J. et al. Bayesian integration of networks without gold standards Bioinformatics, 28 (2012),pp. 1495-1500
    [187] Whirl-Carrillo, M., McDonagh, E., Hebert, J. et al. Pharmacogenomics knowledge for personalized medicine Clin. Pharmacol. Ther., 92 (2012),pp. 414-417
    [188] Willsey, A.J., Sanders, S.J., Li, M. et al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism Cell, 155 (2013),pp. 997-1007
    [189] Wu, G., Dawson, E., Duong, A. et al. ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis F1000Res, 3 (2014),p. 146
    [190] Wu, G., Feng, X., Stein, L. Research A human functional protein interaction network and its application to cancer data analysis Genome Biol., 11 (2010),p. R53
    [191] Wu, G., Stein, L. A network module-based method for identifying cancer prognostic signatures Genome Biol., 13 (2012),p. R112
    [192] Wu, M.Y., Dai, D.Q., Zhang, X.F. et al. PLoS One, 8 (2013),p. e66256
    [193] Wu, X., Jiang, R., Zhang, M.Q. et al. Network-based global inference of human disease genes Mol. Syst. Biol., 4 (2008),p. 189
    [194] Xia, J., Benner, M.J., Hancock, R.E. NetworkAnalyst-integrative approaches for protein–protein interaction network analysis and visual exploration Nucleic Acids Res., 42 (2014),pp. W167-W174
    [195] Xu, J., Li, Y. Discovering disease-genes by topological features in human protein–protein interaction network Bioinformatics, 22 (2006),pp. 2800-2805
    [196] Yamanishi, Y., Araki, M., Gutteridge, A. et al. Prediction of drug–target interaction networks from the integration of chemical and genomic spaces Bioinformatics, 24 (2008),pp. i232-i240
    [197] Yang, R., Bai, Y., Qin, Z. et al. EgoNet: identification of human disease ego-network modules BMC Genomics, 15 (2014),p. 314
    [198] Yu, W., He, L., Zhao, Y. et al. Dynamic protein-protein interaction subnetworks of lung cancer in cases with smoking history Chin. J. Cancer, 32 (2013),pp. 84-90
    [199] Yuryev, A., Kotelnikova, E., Daraselia, N. Ariadne's ChemEffect and Pathway Studio knowledge base Expert Opin. Drug Discov., 4 (2009),pp. 1307-1318
    [200] Zhang, S., Li, Q., Liu, J. et al. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules Bioinformatics, 27 (2011),pp. i401-i409
    [201] Zhang, W., Ota, T., Shridhar, V. et al. Network-based survival analysis reveals subnetwork signatures for predicting outcomes of ovarian cancer treatment PLoS Comput. Biol., 9 (2013),p. e1002975
    [202] Zhang, X., Zhang, R., Jiang, Y. et al. The expanded human disease network combining protein–protein interaction information Eur. J. Hum. Genet., 19 (2011),pp. 783-788
    [203] Zhang, Y., De, S., Garner, J.R. et al. Systematic analysis, comparison, and integration of disease based human genetic association data and mouse genetic phenotypic information BMC Med. Genomics, 3 (2010),p. 1
    [204] Zhou, H., Pan, W., Shen, X. Penalized model-based clustering with unconstrained covariance matrices Electron. J. Stat., 3 (2009),p. 1473
    [205] Zhuang, L., Wu, Y., Han, J. et al. A network biology approach to discover the molecular biomarker associated with hepatocellular carcinoma Biomed. Res. Int., 2014 (2014),p. 278956
    [206] Žitnik, M., Janjić, V., Larminie, C. et al. Discovering disease–disease associations by fusing systems-level molecular data Sci. Rep., 3 (2013),p. 3202
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  23
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-11
  • 录用日期:  2015-11-20
  • 修回日期:  2015-10-22
  • 网络出版日期:  2015-12-15
  • 刊出日期:  2016-06-20

目录

    /

    返回文章
    返回