1. | Li, X., Liu, B., Wen, Y. et al. Coordination of RAB-8 and RAB-11 during unconventional protein secretion. Journal of Cell Biology, 2024, 223(2): e202306107. 必应学术 | |
2. | Shao, Q., Wijaya, C.S., Wang, S. et al. The SNARE complex formed by RIC-4/SEC-22/SYX-2 promotes C. elegans epidermal wound healing. Cell Reports, 2023, 42(11): 113349. 必应学术 | |
3. | Zhang, J., Jiang, Z., Chen, C. et al. Age-associated decline in RAB-10 efficacy impairs intestinal barrier integrity. Nature Aging, 2023, 3(9): 1107-1127. 必应学术 | |
4. | Meng, X., Wijaya, C.S., Shao, Q. et al. Triggered Golgi membrane enrichment promotes PtdIns(4, 5)P2 generation for plasma membrane repair. Journal of Cell Biology, 2023, 222(8): e202303017. 必应学术 | |
5. | Ren, X., Zhou, H., Sun, Y. et al. MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential in Caenorhabditis elegans. EMBO Reports, 2023, 24(8): e56297. 必应学术 | |
6. | Xu, S., Li, S., Bjorklund, M. et al. Mitochondrial fragmentation and ROS signaling in wound response and repair. Cell Regeneration, 2022, 11(1): 38. 必应学术 | |
7. | Wang, Y., Yang, Q., Meng, X. et al. Recruitment of tetraspanin TSP-15 to epidermal wounds promotes plasma membrane repair in C. elegans. Developmental Cell, 2022, 57(13): 1630-1642.e4. 必应学术 | |
8. | Xu, J., Meng, X., Yang, Q. et al. Redox-sensitive CDC-42 clustering promotes wound closure in C. elegans. Cell Reports, 2021, 37(8): 110040. 必应学术 | |
9. | Panchal, K., Tiwari, A.K. Miro (Mitochondrial Rho GTPase), a key player of mitochondrial axonal transport and mitochondrial dynamics in neurodegenerative diseases. Mitochondrion, 2021. 必应学术 | |
10. | Zinsmaier, K.E.. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases, 2021, 12(5-6): 372-398. 必应学术 | |
11. | Fu, H., Zhou, H., Yu, X. et al. Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling. Nature Communications, 2020, 11(1): 1050. 必应学术 | |
12. | Meng, X., Yang, Q., Yu, X. et al. Actin Polymerization and ESCRT Trigger Recruitment of the Fusogens Syntaxin-2 and EFF-1 to Promote Membrane Repair in C. elegans. Developmental Cell, 2020, 54(5): 624-638.e5. 必应学术 | |
13. | Chen, W., Dong, Y., Saqib, H.S.A. et al. Functions of duplicated glucosinolate sulfatases in the development and host adaptation of Plutella xylostella. Insect Biochemistry and Molecular Biology, 2020. 必应学术 | |
14. | Hoshino, T., Iijima, N., Hata, M. et al. Molecular characterization of high stearic acid soybean mutants and post-transcriptional control of GmSACPD genes in the mutant with a single nucleotide deletion. Plant Gene, 2020. 必应学术 | |
15. | Celaj, A., Gebbia, M., Musa, L. et al. Highly Combinatorial Genetic Interaction Analysis Reveals a Multi-Drug Transporter Influence Network. Cell Systems, 2020, 10(1): 25-38.e10. 必应学术 | |
16. | Sure, G.R., Chatterjee, A., Mishra, N. et al. UNC-16/JIP3 and UNC-76/FEZ1 limit the density of mitochondria in C. elegans neurons by maintaining the balance of anterograde and retrograde mitochondrial transport. Scientific Reports, 2018, 8(1): 8938. 必应学术 | |
17. | Raiders, S.A., Eastwood, M.D., Bacher, M. et al. Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosis. PLoS Genetics, 2018, 14(7): e1007417. 必应学术 | |
18. | Meng, X., Zhou, H., Xu, S. CRISPR-Cas9 mediated genome editing in Caenorhabditis elegans. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2017, 33(10): 1693-1699. 必应学术 | |
19. | Knowlton, W.M., Hubert, T., Wu, Z. et al. A select subset of electron transport chain genes associated with optic atrophy link mitochondria to axon regeneration in Caenorhabditis elegans. Frontiers in Neuroscience, 2017, 11(MAY): 263. 必应学术 | |