留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zebrafish as a Model for Human Ciliopathies

Zhu Song Xiaoli Zhang Shuo Jia Pamela C. Yelick Chengtian Zhao

Zhu Song, Xiaoli Zhang, Shuo Jia, Pamela C. Yelick, Chengtian Zhao. Zebrafish as a Model for Human Ciliopathies[J]. Journal of Genetics and Genomics, 2016, 43(3): 107-120. doi: 10.1016/j.jgg.2016.02.001
Citation: Zhu Song, Xiaoli Zhang, Shuo Jia, Pamela C. Yelick, Chengtian Zhao. Zebrafish as a Model for Human Ciliopathies[J]. Journal of Genetics and Genomics, 2016, 43(3): 107-120. doi: 10.1016/j.jgg.2016.02.001

doi: 10.1016/j.jgg.2016.02.001

Zebrafish as a Model for Human Ciliopathies

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Aldahmesh, M.A., Li, Y., Alhashem, A. et al. Hum. Mol. Genet., 23 (2014),pp. 3307-3315
    [2] Auer, T.O., Del Bene, F. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish Methods, 69 (2014),pp. 142-150
    [3] Austin-Tse, C., Halbritter, J., Zariwala, M.A. et al. Am. J. Hum. Genet., 93 (2013),pp. 672-686
    [4] Bachmann-Gagescu, R., Phelps, I.G., Dempsey, J.C. et al. Hum. Mutat., 36 (2015),pp. 831-835
    [5] Bachmann-Gagescu, R., Phelps, I.G., Stearns, G. et al. Hum. Mol. Genet., 20 (2011),pp. 4041-4055
    [6] Baker, K., Beales, P.L. Making sense of cilia in disease: the human ciliopathies Am. J. Med. Genet. C Semin. Med. Genet., 151C (2009),pp. 281-295
    [7] Basten, S.G., Davis, E.E., Gillis, A.J. et al. PLoS Genet., 9 (2013)
    [8] Baye, L.M., Patrinostro, X., Swaminathan, S. et al. The N-terminal region of centrosomal protein 290 (CEP290) restores vision in a zebrafish model of human blindness Hum. Mol. Genet., 20 (2011),pp. 1467-1477
    [9] Beales, P.L., Bland, E., Tobin, J.L. et al. Nat. Genet., 39 (2007),pp. 727-729
    [10] Becker-Heck, A., Zohn, I.E., Okabe, N. et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation Nat. Genet., 43 (2011),pp. 79-84
    [11] Bedell, V.M., Wang, Y., Campbell, J.M. et al. Nature, 491 (2012),pp. 114-118
    [12] Ben, J., Elworthy, S., Ng, A.S. et al. Development, 138 (2011),pp. 4969-4978
    [13] Bisgrove, B.W., Snarr, B.S., Emrazian, A. et al. Polaris and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for specification of the zebrafish left-right axis Dev. Biol., 287 (2005),pp. 274-288
    [14] Bizet, A.A., Becker-Heck, A., Ryan, R. et al. Nat. Commun., 6 (2015),p. 8666
    [15] Borovina, A., Superina, S., Voskas, D. et al. Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia Nat. Cell Biol., 12 (2010),pp. 407-412
    [16] Burckle, C., Gaude, H.M., Vesque, C. et al. Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros Hum. Mol. Genet., 20 (2011),pp. 2611-2627
    [17] Cantagrel, V., Silhavy, J.L., Bielas, S.L. et al. Am. J. Hum. Genet., 83 (2008),pp. 170-179
    [18] Cao, Y., Semanchik, N., Lee, S.H. et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 21819-21824
    [19] Caspary, T., Larkins, C.E., Anderson, K.V. The graded response to Sonic Hedgehog depends on cilia architecture Dev. Cell, 12 (2007),pp. 767-778
    [20] Castleman, V.H., Romio, L., Chodhari, R. et al. Am. J. Hum. Genet., 84 (2009),pp. 197-209
    [21] Chamling, X., Seo, S., Bugge, K. et al. PLoS One, 8 (2013),p. e59101
    [22] Chang, N., Sun, C., Gao, L. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos Cell Res., 23 (2013),pp. 465-472
    [23] Chen, J., Knowles, H.J., Hebert, J.L. et al. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry J. Clin. Invest., 102 (1998),pp. 1077-1082
    [24] Chiang, A.P., Beck, J.S., Yen, H.J. et al. Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 6287-6292
    [25] Choksi, S.P., Babu, D., Lau, D. et al. Systematic discovery of novel ciliary genes through functional genomics in the zebrafish Development, 141 (2014),pp. 3410-3419
    [26] Colantonio, J.R., Vermot, J., Wu, D. et al. The dynein regulatory complex is required for ciliary motility and otolith biogenesis in the inner ear Nature, 457 (2009),pp. 205-209
    [27] Cole, D.G., Snell, W.J. SnapShot: intraflagellar transport Cell, 137 (2009)
    [28] Coppieters, F., Lefever, S., Leroy, B.P. et al. Hum. Mutat., 31 (2010),pp. 1097-1108
    [29] Cortellino, S., Wang, C., Wang, B. et al. Dev. Biol., 325 (2009),pp. 225-237
    [30] Coxam, B., Sabine, A., Bower, N.I. et al. Pkd1 regulates lymphatic vascular morphogenesis during development Cell Rep., 7 (2014),pp. 623-633
    [31] Craft, J.M., Harris, J.A., Hyman, S. et al. Tubulin transport by IFT is upregulated during ciliary growth by a cilium-autonomous mechanism J. Cell Biol., 208 (2015),pp. 223-237
    [32] Davis, E.E., Zhang, Q., Liu, Q. et al. Nat. Genet., 43 (2011),pp. 189-196
    [33] Delling, M., DeCaen, P.G., Doerner, J.F. et al. Primary cilia are specialized calcium signalling organelles Nature, 504 (2013),pp. 311-314
    [34] Duldulao, N.A., Lee, S., Sun, Z. Development, 136 (2009),pp. 4033-4042
    [35] Endoh-Yamagami, S., Evangelista, M., Wilson, D. et al. The mammalian Cos2 homolog Kif7 plays an essential role in modulating Hh signal transduction during development Curr. Biol., 19 (2009),pp. 1320-1326
    [36] Ferrante, M.I., Romio, L., Castro, S. et al. Hum. Mol. Genet., 18 (2009),pp. 289-303
    [37] Fogelgren, B., Lin, S.Y., Zuo, X. et al. The exocyst protein Sec10 interacts with Polycystin-2 and knockdown causes PKD-phenotypes PLoS Genet., 7 (2011),p. e1001361
    [38] Fowkes, M.E., Mitchell, D.R. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits Mol. Biol. Cell, 9 (1998),pp. 2337-2347
    [39] Francescatto, L., Rothschild, S.C., Myers, A.L. et al. The activation of membrane targeted CaMK-II in the zebrafish Kupffer's vesicle is required for left-right asymmetry Development, 137 (2010),pp. 2753-2762
    [40] Garcia-Gonzalo, F.R., Corbit, K.C., Sirerol-Piquer, M.S. et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition Nat. Genet., 43 (2011),pp. 776-784
    [41] Gerdes, J.M., Liu, Y., Zaghloul, N.A. et al. Disruption of the basal body compromises proteasomal function and perturbs intracellular Wnt response Nat. Genet., 39 (2007),pp. 1350-1360
    [42] Gorden, N.T., Arts, H.H., Parisi, M.A. et al. Am. J. Hum. Genet., 83 (2008),pp. 559-571
    [43] Haddon, C., Lewis, J. J. Comp. Neurol., 365 (1996),pp. 113-128
    [44] Halbritter, J., Bizet, A.A., Schmidts, M. et al. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans Am. J. Hum. Genet., 93 (2013),pp. 915-925
    [45] Hao, L., Thein, M., Brust-Mascher, I. et al. Intraflagellar transport delivers tubulin isotypes to sensory cilium middle and distal segments Nat. Cell Biol., 13 (2011),pp. 790-798
    [46] Harris, P.C., Torres, V.E. Polycystic kidney disease Annu. Rev. Med., 60 (2009),pp. 321-337
    [47] Hildebrandt, F., Attanasio, M., Otto, E. Nephronophthisis: disease mechanisms of a ciliopathy J. Am. Soc. Nephrol., 20 (2009),pp. 23-35
    [48] Hildebrandt, F., Benzing, T., Katsanis, N. Ciliopathies N. Engl. J. Med., 364 (2011),pp. 1533-1543
    [49] Hjeij, R., Onoufriadis, A., Watson, C.M. et al. Am. J. Hum. Genet., 95 (2014),pp. 257-274
    [50] Howe, K., Clark, M.D., Torroja, C.F. et al. The zebrafish reference genome sequence and its relationship to the human genome Nature, 496 (2013),pp. 498-503
    [51] Huangfu, D., Anderson, K.V. Cilia and Hedgehog responsiveness in the mouse Proc. Natl. Acad. Sci. USA, 102 (2005),pp. 11325-11330
    [52] Hudak, L.M., Lunt, S., Chang, C.H. et al. The intraflagellar transport protein Ift80 is essential for photoreceptor survival in a zebrafish model of jeune asphyxiating thoracic dystrophy Invest. Ophthalmol. Vis. Sci., 51 (2010),pp. 3792-3799
    [53] Huet, D., Blisnick, T., Perrot, S. et al. The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport eLife, 3 (2014),p. e02419
    [54] Hurd, T., Zhou, W., Jenkins, P. et al. The retinitis pigmentosa protein RP2 interacts with polycystin 2 and regulates cilia-mediated vertebrate development Hum. Mol. Genet., 19 (2010),pp. 4330-4344
    [55] Ishikawa, H., Marshall, W.F. Ciliogenesis: building the cell's antenna Nat. Rev. Mol. Cell Biol., 12 (2011),pp. 222-234
    [56] Jeanson, L., Copin, B., Papon, J.F. et al. Am. J. Hum. Genet., 97 (2015),pp. 153-162
    [57] Jin, H., White, S.R., Shida, T. et al. The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia Cell, 141 (2010),pp. 1208-1219
    [58] Kardon, J.R., Vale, R.D. Regulators of the cytoplasmic dynein motor Nat. Rev. Mol. Cell Biol., 10 (2009),pp. 854-865
    [59] Kettleborough, R.N., Busch-Nentwich, E.M., Harvey, S.A. et al. A systematic genome-wide analysis of zebrafish protein-coding gene function Nature, 496 (2013),pp. 494-497
    [60] Khanna, H., Davis, E.E., Murga-Zamalloa, C.A. et al. Nat. Genet., 41 (2009),pp. 739-745
    [61] Kishimoto, N., Cao, Y., Park, A. et al. Dev. Cell, 14 (2008),pp. 954-961
    [62] Knowles, M.R., Ostrowski, L.E., Loges, N.T. et al. Am. J. Hum. Genet., 93 (2013),pp. 711-720
    [63] Kok, F.O., Shin, M., Ni, C.W. et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish Dev. Cell, 32 (2015),pp. 97-108
    [64] Kramer-Zucker, A.G., Olale, F., Haycraft, C.J. et al. Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer's vesicle is required for normal organogenesis Development, 132 (2005),pp. 1907-1921
    [65] Kurkowiak, M., Zietkiewicz, E., Witt, M. Recent advances in primary ciliary dyskinesia genetics J. Med. Genet., 52 (2015),pp. 1-9
    [66] Le Corre, S., Eyre, D., Drummond, I.A. Modulation of the secretory pathway rescues zebrafish polycystic kidney disease pathology J. Am. Soc. Nephrol., 25 (2014),pp. 1749-1759
    [67] Lechtreck, K.F., Witman, G.B. J. Cell Biol., 176 (2007),pp. 473-482
    [68] , He, M., Ocbina, P.J., Anderson, K.V. Mouse Kif7/Costal2 is a cilia-associated protein that regulates Sonic hedgehog signaling Proc. Natl. Acad. Sci. USA, 106 (2009),pp. 13377-13382
    [69] Lindstrand, A., Davis, E.E., Carvalho, C.M. et al. Am. J. Hum. Genet., 94 (2014),pp. 745-754
    [70] Liu, A., Wang, B., Niswander, L.A. Mouse intraflagellar transport proteins regulate both the activator and repressor functions of Gli transcription factors Development, 132 (2005),pp. 3103-3111
    [71] Liu, D., Wang, Z., Xiao, A. et al. J. Genet. Genomics, 41 (2014),pp. 43-46
    [72] Liu, Y., Pathak, N., Kramer-Zucker, A. et al. Notch signaling controls the differentiation of transporting epithelia and multiciliated cells in the zebrafish pronephros Development, 134 (2007),pp. 1111-1122
    [73] Lopez-Schier, H., Hudspeth, A.J. A two-step mechanism underlies the planar polarization of regenerating sensory hair cells Proc. Natl. Acad. Sci. USA, 103 (2006),pp. 18615-18620
    [74] Lu, H., Toh, M.T., Narasimhan, V. et al. A function for the Joubert syndrome protein Arl13b in ciliary membrane extension and ciliary length regulation Dev. Biol., 397 (2015),pp. 225-236
    [75] Malicki, J., Avanesov, A., Li, J. et al. Analysis of cilia structure and function in zebrafish Methods Cell Biol., 101 (2011),pp. 39-74
    [76] Mangos, S., Lam, P.Y., Zhao, A. et al. Dis. Model. Mech., 3 (2010),pp. 354-365
    [77] Maurya, A.K., Ben, J., Zhao, Z. et al. Positive and negative regulation of Gli activity by Kif7 in the zebrafish embryo PLoS Genet., 9 (2013),p. e1003955
    [78] May, S.R., Ashique, A.M., Karlen, M. et al. Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli Dev. Biol., 287 (2005),pp. 378-389
    [79] Merrick, D., Chapin, H., Baggs, J.E. et al. The gamma-secretase cleavage product of polycystin-1 regulates TCF and CHOP-mediated transcriptional activation through a p300-dependent mechanism Dev. Cell, 22 (2012),pp. 197-210
    [80] Mitchison, H.M., Schmidts, M., Loges, N.T. et al. Nat. Genet., 44 (2012),pp. 381-389
    [81] Mockel, A., Perdomo, Y., Stutzmann, F. et al. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies Prog. Retin. Eye Res., 30 (2011),pp. 258-274
    [82] Mukhopadhyay, S., Wen, X., Chih, B. et al. TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia Genes Dev., 24 (2010),pp. 2180-2193
    [83] Nachury, M.V., Loktev, A.V., Zhang, Q. et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis Cell, 129 (2007),pp. 1201-1213
    [84] Narasimhan, V., Hjeij, R., Vij, S. et al. Hum. Mutat., 36 (2015),pp. 307-318
    [85] Nauli, S.M., Alenghat, F.J., Luo, Y. et al. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells Nat. Genet., 33 (2003),pp. 129-137
    [86] Ni, T.T., Lu, J., Zhu, M. et al. Conditional control of gene function by an invertible gene trap in zebrafish Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 15389-15394
    [87] Noone, P.G., Leigh, M.W., Sannuti, A. et al. Primary ciliary dyskinesia: diagnostic and phenotypic features Am. J. Respir. Crit. Care Med., 169 (2004),pp. 459-467
    [88] Olbrich, H., Schmidts, M., Werner, C. et al. Am. J. Hum. Genet., 91 (2012),pp. 672-684
    [89] Omori, Y., Zhao, C., Saras, A. et al. Nat. Cell Biol., 10 (2008),pp. 437-444
    [90] Paavola, J., Schliffke, S., Rossetti, S. et al. Polycystin-2 mutations lead to impaired calcium cycling in the heart and predispose to dilated cardiomyopathy J. Mol. Cell Cardiol., 58 (2013),pp. 199-208
    [91] Panizzi, J.R., Becker-Heck, A., Castleman, V.H. et al. Nat. Genet., 44 (2012),pp. 714-719
    [92] Parisi, M.A., Doherty, D., Chance, P.F. et al. Joubert syndrome (and related disorders) (OMIM 213300) Eur. J. Hum. Genet., 15 (2007),pp. 511-521
    [93] Pazour, G.J. Comparative genomics: prediction of the ciliary and basal body proteome Curr. Biol., 14 (2004),pp. R575-R577
    [94] Roosing, S., Hofree, M., Kim, S. et al. eLife, 4 (2015),p. e06602
    [95] Ross, A.J., May-Simera, H., Eichers, E.R. et al. Disruption of Bardet-Biedl syndrome ciliary proteins perturbs planar cell polarity in vertebrates Nat. Genet., 37 (2005),pp. 1135-1140
    [96] Rossi, A., Kontarakis, Z., Gerri, C. et al. Genetic compensation induced by deleterious mutations but not gene knockdowns Nature, 524 (2015),pp. 230-233
    [97] Ryan, S., Willer, J., Marjoram, L. et al. Rapid identification of kidney cyst mutations by whole exome sequencing in zebrafish Development, 140 (2013),pp. 4445-4451
    [98] Salonen, R., Paavola, P. Meckel syndrome J. Med. Genet., 35 (1998),pp. 497-501
    [99] Sang, L., Miller, J.J., Corbit, K.C. et al. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways Cell, 145 (2011),pp. 513-528
    [100] Sarmah, B., Winfrey, V.P., Olson, G.E. et al. A role for the inositol kinase Ipk1 in ciliary beating and length maintenance Proc. Natl. Acad. Sci. USA, 104 (2007),pp. 19843-19848
    [101] Satir, P., Christensen, S.T. Overview of structure and function of mammalian cilia Annu. Rev. Physiol., 69 (2007),pp. 377-400
    [102] Sayer, J.A., Otto, E.A., O'Toole, J.F. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4 Nat. Genet., 38 (2006),pp. 674-681
    [103] Schaefer, E., Stoetzel, C., Scheidecker, S. et al. Identification of a novel mutation confirms the implication of IFT172 (BBS20) in Bardet-Biedl syndrome J. Hum. Genet. (2016)
    [104] Schmidts, M. Clinical genetics and pathobiology of ciliary chondrodysplasias J. Pediatr. Genet., 3 (2014),pp. 46-94
    [105] Scholey, J.M. Intraflagellar transport motors in cilia: moving along the cell's antenna J. Cell Biol., 180 (2008),pp. 23-29
    [106] Schottenfeld, J., Sullivan-Brown, J., Burdine, R.D. Zebrafish curly up encodes a Pkd2 ortholog that restricts left-side-specific expression of southpaw Development, 134 (2007),pp. 1605-1615
    [107] Serluca, F.C., Xu, B., Okabe, N. et al. Mutations in zebrafish leucine-rich repeat-containing six-like affect cilia motility and result in pronephric cysts, but have variable effects on left-right patterning Development, 136 (2009),pp. 1621-1631
    [108] Slanchev, K., Putz, M., Schmitt, A. et al. Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish Hum. Mol. Genet., 20 (2011),pp. 3119-3128
    [109] Snow, J.J., Ou, G., Gunnarson, A.L. et al. Nat. Cell Biol., 6 (2004),pp. 1109-1113
    [110] Stephen, L.A., Tawamie, H., Davis, G.M. et al. eLife, 4 (2015)
    [111] Stoetzel, C., Laurier, V., Davis, E.E. et al. Nat. Genet., 38 (2006),pp. 521-524
    [112] Stoetzel, C., Muller, J., Laurier, V. et al. Am. J. Hum. Genet., 80 (2007),pp. 1-11
    [113] Stooke-Vaughan, G.A., Huang, P., Hammond, K.L. et al. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle Development, 139 (2012),pp. 1777-1787
    [114] Stubbs, J.L., Oishi, I., Izpisua Belmonte, J.C. et al. Nat. Genet., 40 (2008),pp. 1454-1460
    [115] Sukumaran, S., Perkins, B.D. Vision Res., 49 (2009),pp. 479-489
    [116] Sullivan-Brown, J., Schottenfeld, J., Okabe, N. et al. Dev. Biol., 314 (2008),pp. 261-275
    [117] Sun, Z., Amsterdam, A., Pazour, G.J. et al. A genetic screen in zebrafish identifies cilia genes as a principal cause of cystic kidney Development, 131 (2004),pp. 4085-4093
    [118] Takakura, A., Contrino, L., Beck, A.W. et al. J. Am. Soc. Nephrol., 19 (2008),pp. 2351-2363
    [119] Tarkar, A., Loges, N.T., Slagle, C.E. et al. DYX1C1 is required for axonemal dynein assembly and ciliary motility Nat. Genet., 45 (2013),pp. 995-1003
    [120] Taschner, M., Bhogaraju, S., Lorentzen, E. Architecture and function of IFT complex proteins in ciliogenesis Differentiation, 83 (2012),pp. S12-S22
    [121] Tayeh, M.K., Yen, H.J., Beck, J.S. et al. Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning Hum. Mol. Genet., 17 (2008),pp. 1956-1967
    [122] Tran, P.V., Haycraft, C.J., Besschetnova, T.Y. et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia Nat. Genet., 40 (2008),pp. 403-410
    [123] van Rooijen, E., Giles, R.H., Voest, E.E. et al. LRRC50, a conserved ciliary protein implicated in polycystic kidney disease J. Am. Soc. Nephrol., 19 (2008),pp. 1128-1138
    [124] Walczak-Sztulpa, J., Eggenschwiler, J., Osborn, D. et al. Am. J. Hum. Genet., 86 (2010),pp. 949-956
    [125] Wallingford, J.B. Planar cell polarity signaling, cilia and polarized ciliary beating Curr. Opin. Cell Biol., 22 (2010),pp. 597-604
    [126] Waters, A.M., Beales, P.L. Ciliopathies: an expanding disease spectrum Pediatr. Nephrol., 26 (2011),pp. 1039-1056
    [127] Yen, H.J., Tayeh, M.K., Mullins, R.F. et al. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer's vesicle cilia function Hum. Mol. Genet., 15 (2006),pp. 667-677
    [128] Yin, X., Takei, Y., Kido, M.A. et al. Neuron, 70 (2011),pp. 310-325
    [129] Young, I.D. Cranioectodermal dysplasia (Sensenbrenner's syndrome) J. Med. Genet., 26 (1989),pp. 393-396
    [130] Yu, X., Lau, D., Ng, C.P. et al. Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear Development, 138 (2011),pp. 487-494
    [131] Yu, X., Ng, C.P., Habacher, H. et al. Foxj1 transcription factors are master regulators of the motile ciliogenic program Nat. Genet., 40 (2008),pp. 1445-1453
    [132] Yuan, S., Zhao, L., Brueckner, M. et al. Intraciliary calcium oscillations initiate vertebrate left-right asymmetry Curr. Biol., 25 (2015),pp. 556-567
    [133] Zariwala, M.A., Knowles, M.R., Omran, H. Genetic defects in ciliary structure and function Annu. Rev. Physiol., 69 (2007),pp. 423-450
    [134] Zhao, C., Malicki, J. Genetic defects of pronephric cilia in zebrafish Mech. Dev., 124 (2007),pp. 605-616
    [135] Zhao, C., Malicki, J. Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos EMBO J., 30 (2011),pp. 2532-2544
    [136] Zhao, C., Omori, Y., Brodowska, K. et al. Kinesin-2 family in vertebrate ciliogenesis Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 2388-2393
    [137] Zu, Y., Tong, X., Wang, Z. et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish Nat. Methods, 10 (2013),pp. 329-331
  • 加载中
计量
  • 文章访问数:  103
  • HTML全文浏览量:  24
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-29
  • 录用日期:  2016-02-05
  • 修回日期:  2016-02-04
  • 网络出版日期:  2016-02-12
  • 刊出日期:  2016-03-20

目录

    /

    返回文章
    返回