留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Editorial Prerogative and the Plant Genome

Daniel F. Voytas

Daniel F. Voytas. Editorial Prerogative and the Plant Genome[J]. Journal of Genetics and Genomics, 2016, 43(5): 229-232. doi: 10.1016/j.jgg.2016.03.004
Citation: Daniel F. Voytas. Editorial Prerogative and the Plant Genome[J]. Journal of Genetics and Genomics, 2016, 43(5): 229-232. doi: 10.1016/j.jgg.2016.03.004

doi: 10.1016/j.jgg.2016.03.004

Editorial Prerogative and the Plant Genome

More Information
    Corresponding author: E-mail address: voytas@umn.edu (Daniel F. Voytas)
  • [1] Arnould, S., Delenda, C., Grizot, S. et al. The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy Protein Eng. Des. Sel., 24 (2011),pp. 27-31
    [2] Baltes, N.J., Gil-Humanes, J., Cermak, T. et al. DNA replicons for plant genome engineering Plant Cell, 26 (2014),pp. 151-163
    [3] Boch, J., Scholze, H., Schornack, S. et al. Breaking the code of DNA binding specificity of TAL-type III effectors Science, 326 (2009),pp. 1509-1512
    [4] Cathomen, T., Joung, J.K. Zinc-finger nucleases: the next generation emerges Mol. Ther., 16 (2008),pp. 1200-1207
    [5] Cermak, T., Baltes, N.J., Cegan, R. et al. High-frequency, precise modification of the tomato genome Genome Biol., 16 (2015),p. 232
    [6] Cermak, T., Doyle, E.L., Christian, M. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting Nucleic Acids Res., 39 (2011),p. e82
    [7] Clasen, B.M., Stoddard, T.J., Luo, S. et al. Improving cold storage and processing traits in potato through targeted gene knockout Plant Biotechnol. J., 14 (2016),pp. 169-176
    [8] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [9] Fauser, F., Roth, N., Pacher, M. et al. Proc. Natl. Acad. Sci. USA, 109 (2012),pp. 7535-7540
    [10] Gepts, P. A comparison between crop domestication, classical breeding, and genetic engineering Crop Sci., 42 (2002),pp. 1780-1790
    [11] Giaever, G., Chu, A.M., Ni, L. et al. Nature, 418 (2002),pp. 387-391
    [12] Haun, W., Coffman, A., Clasen, B.M. et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family Plant Biotechnol. J., 12 (2014),pp. 934-940
    [13] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [14] Jones, H.D. Regulatory uncertainty over genome editing Nat. Plants, 1 (2015),pp. 1-3
    [15] Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [16] Ma, X., Zhang, Q., Zhu, Q. et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants Mol. Plant, 8 (2015),pp. 1274-1284
    [17] Mali, P., Yang, L., Esvelt, K.M. et al. Science, 339 (2013),pp. 823-826
    [18] Mao, Y., Zhang, Z., Feng, Z. et al. Plant Biotechnol. J., 14 (2016),pp. 519-532
    [19] Micke, A., Donini, B., Maluszynski, M.
    [20] Moscou, M.J., Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors Science, 326 (2009),p. 1501
    [21] Puchta, H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution J. Exp. Bot., 56 (2005),pp. 1-14
    [22] Qi, Y., Zhang, Y., Zhang, F. et al. Genome Res., 23 (2013),pp. 547-554
    [23] Shan, Q., Wang, Y., Li, J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system Nat. Biotechnol., 31 (2013),pp. 686-688
    [24] Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [25] Sleper, D.A., Poehlman, J.M.
    [26] Sun, Y., Thompson, M., Lin, G. et al. Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization Plant Physiol., 144 (2007),pp. 1278-1291
    [27] Thakore, P.I., Black, J.B., Hilton, I.B. et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation Nat. Methods, 13 (2016),pp. 127-137
    [28] Townsend, J.A., Wright, D.A., Winfrey, R.J. et al. High-frequency modification of plant genes using engineered zinc-finger nucleases Nature, 459 (2009),pp. 442-445
    [29] Voytas, D.F. Plant genome engineering with sequence-specific nucleases Annu. Rev. Plant Biol., 64 (2013),pp. 327-350
    [30] Wang, Y., Cheng, X., Shan, Q. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew Nat. Biotechnol., 32 (2014),pp. 947-951
    [31] Wang, Z.P., Xing, H.L., Dong, L. et al. Genome Biol., 16 (2015),p. 144
    [32] Weeks, D.P., Spalding, M.H., Yang, B. Use of designer nucleases for targeted gene and genome editing in plants Plant Biotechnol. J., 14 (2016),pp. 483-495
  • 加载中
计量
  • 文章访问数:  106
  • HTML全文浏览量:  35
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-11
  • 录用日期:  2016-03-11
  • 网络出版日期:  2016-03-22
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回