留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure

Jason Ear Jessica Hsueh Melinda Nguyen QingHua Zhang Victoria Sung Rajesh Chopra Kathleen M. Sakamoto Shuo Lin

Jason Ear, Jessica Hsueh, Melinda Nguyen, QingHua Zhang, Victoria Sung, Rajesh Chopra, Kathleen M. Sakamoto, Shuo Lin. A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure[J]. Journal of Genetics and Genomics, 2016, 43(5): 307-318. doi: 10.1016/j.jgg.2016.03.007
Citation: Jason Ear, Jessica Hsueh, Melinda Nguyen, QingHua Zhang, Victoria Sung, Rajesh Chopra, Kathleen M. Sakamoto, Shuo Lin. A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure[J]. Journal of Genetics and Genomics, 2016, 43(5): 307-318. doi: 10.1016/j.jgg.2016.03.007

doi: 10.1016/j.jgg.2016.03.007

A Zebrafish Model of 5q-Syndrome Using CRISPR/Cas9 Targeting RPS14 Reveals a p53-Independent and p53-Dependent Mechanism of Erythroid Failure

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Barlow, J.L., Drynan, L.F., Hewett, D.R. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q-syndrome Nat. Med., 16 (2010),pp. 59-66
    [2] Barlow, J.L., Drynan, L.F., Trim, N.L. et al. New insights into 5q-syndrome as a ribosomopathy Cell Cycle, 9 (2010),pp. 4286-4293
    [3] Boultwood, J. The role of haploinsufficiency of RPS14 and p53 activation in the molecular pathogenesis of the 5q-syndrome Pediatr. Rep., 3 (2011),p. e10
    [4] Boultwood, J., Fidler, C., Lewis, S. et al. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q-syndrome: delineation of the critical region on 5q and identification of a 5q-breakpoint Genomics, 19 (1994),pp. 425-432
    [5] Boultwood, J., Fidler, C., Strickson, A.J. et al. Narrowing and genomic annotation of the commonly deleted region of the 5q-syndrome Blood, 99 (2002),pp. 4638-4641
    [6] Boultwood, J., Pellagatti, A., Cattan, H. et al. Br. J. Haematol., 139 (2007),pp. 578-589
    [7] Chang, N., Sun, C., Gao, L. et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos Cell Res., 23 (2013),pp. 465-472
    [8] Danilova, N., Sakamoto, K.M., Lin, S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family Blood, 112 (2008),pp. 5228-5237
    [9] , Kieran, M.W., Chan, F.Y., Barone, L.M. et al. Intraembryonic hematopoietic cell migration during vertebrate development Proc. Natl. Acad. Sci. USA, 92 (1995),pp. 10713-10717
    [10] Draptchinskaia, N., Gustavsson, P., Andersson, B. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia Nat. Genet., 21 (1999),pp. 169-175
    [11] Ear, J., Huang, H., Wilson, T. et al. RAP-011 improves erythropoiesis in zebrafish model of Diamond-Blackfan anemia through antagonizing lefty1 Blood, 126 (2015),pp. 880-890
    [12] Ebert, B.L., Pretz, J., Bosco, J. et al. Nature, 451 (2008),pp. 335-339
    [13] Ganapathi, K.A., Austin, K.M., Lee, C.S. et al. The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA Blood, 110 (2007),pp. 1458-1465
    [14] Ganis, J.J., Hsia, N., Trompouki, E. et al. Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR Dev. Biol., 366 (2012),pp. 185-194
    [15] Jowett, T. Analysis of protein and gene expression Methods Cell Biol., 59 (1999),pp. 63-85
    [16] Kok, F.O., Shin, M., Ni, C.W. et al. Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish Dev. Cell, 32 (2015),pp. 97-108
    [17] List, A., Dewald, G., Bennett, J. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion N. Engl. J. Med., 355 (2006),pp. 1456-1465
    [18] List, A., Kurtin, S., Roe, D.J. et al. Efficacy of lenalidomide in myelodysplastic syndromes N. Engl. J. Med., 352 (2005),pp. 549-557
    [19] Luzzatto, L., Karadimitris, A. Dyskeratosis and ribosomal rebellion Nat. Genet., 19 (1998),pp. 6-7
    [20] Miliani de Marval, P.L., Zhang, Y. The RP-Mdm2-p53 pathway and tumorigenesis Oncotarget, 2 (2011),pp. 234-238
    [21] Narla, A., Payne, E.M., Abayasekara, N. et al. L-Leucine improves the anaemia in models of Diamond Blackfan anaemia and the 5q-syndrome in a TP53-independent way Br. J. Haematol., 167 (2014),pp. 524-528
    [22] Thiel, C.T., Rauch, A. The molecular basis of the cartilage-hair hypoplasia-anauxetic dysplasia spectrum Best Pract. Res. Clin. Endocrinol. Metab., 25 (2011),pp. 131-142
    [23] Wei, S., Chen, X., McGraw, K. et al. Lenalidomide promotes p53 degradation by inhibiting MDM2 auto-ubiquitination in myelodysplastic syndrome with chromosome 5q deletion Oncogene, 32 (2013),pp. 1110-1120
    [24] Wu, L., Li, X., Xu, F. et al. Low RPS14 expression in MDS without 5q – aberration confers higher apoptosis rate of nucleated erythrocytes and predicts prolonged survival and possible response to lenalidomide in lower risk non-5q-patients Eur. J. Haematol., 90 (2013),pp. 486-493
    [25] Zhang, Y., Ear, J., Yang, Z. et al. Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19 Cell Death Dis., 5 (2014),p. e1352
  • 加载中
计量
  • 文章访问数:  83
  • HTML全文浏览量:  32
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-28
  • 录用日期:  2016-03-06
  • 修回日期:  2016-02-21
  • 网络出版日期:  2016-04-02
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回