留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping

Aurélie Lemoine Gaëlle Chauveau-Le Friec Francina Langa Cédric Louvet

Aurélie Lemoine, Gaëlle Chauveau-Le Friec, Francina Langa, Cédric Louvet. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping[J]. Journal of Genetics and Genomics, 2016, 43(5): 329-340. doi: 10.1016/j.jgg.2016.04.004
Citation: Aurélie Lemoine, Gaëlle Chauveau-Le Friec, Francina Langa, Cédric Louvet. Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping[J]. Journal of Genetics and Genomics, 2016, 43(5): 329-340. doi: 10.1016/j.jgg.2016.04.004

doi: 10.1016/j.jgg.2016.04.004

Generation of a Double KO Mouse by Simultaneous Targeting of the Neighboring Genes Tmem176a and Tmem176b Using CRISPR/Cas9: Key Steps from Design to Genotyping

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ansai, S., Inohaya, K., Yoshiura, Y. et al. Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka Dev. Growth Differ., 56 (2014),pp. 98-107
    [2] Behringer, R., Gerstentein, M., Vintersten, K. et al.
    [3] Bolukbasi, M.F., Gupta, A., Wolfe, S.A. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery Nat. Methods, 13 (2015),pp. 41-50
    [4] Chenouard, V., Brusselle, L., Heslan, J.-M. et al. A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis J. Genet. Genomics, 43 (2016),pp. 341-348
    [5] Cho, S.W., Kim, S., Kim, Y. et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases Genome Res., 24 (2014),pp. 132-141
    [6] Condamine, T., Le Texier, L., Howie, D. et al. Tmem176B and Tmem176A are associated with the immature state of dendritic cells J. Leukoc. Biol., 88 (2010),pp. 507-515
    [7] Cong, L., Ran, F.A., Cox, D. et al. Multiplex genome engineering using CRISPR/Cas systems Science, 339 (2013),pp. 819-823
    [8] Fu, Y., Sander, J.D., Reyon, D. et al. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs Nat. Biotechnol., 32 (2014),pp. 279-284
    [9] Hsu, P.D., Scott, D.A., Weinstein, J.A. et al. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol., 31 (2013),pp. 827-832
    [10] Jinek, M., Chylinski, K., Fonfara, I. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity Science, 337 (2012),pp. 816-821
    [11] Kang, S., Tsai, L.T., Zhou, Y. et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis Nat. Cell Biol., 17 (2015),pp. 44-56
    [12] Kim, S., Kim, D., Cho, S.W. et al. Genome Res., 24 (2014),pp. 1012-1019
    [13] Kleinstiver, B.P., Pattanayak, V., Prew, M.S. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects Nature, 529 (2016),pp. 490-495
    [14] Kraft, K., Geuer, S., Will, A.J. et al. Deletions, inversions, duplications: engineering of structural variants using CRISPR/Cas in mice Cell Rep., 10 (2015),pp. 833-839
    [15] Louvet, C., Chiffoleau, E., Heslan, M. et al. Identification of a new member of the CD20/FcepsilonRIbeta family overexpressed in tolerated allografts Am. J. Transplant., 5 (2005),pp. 2143-2153
    [16] Maeda, Y., Ide, T., Koike, M. et al. GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus Nat. Cell Biol., 10 (2008),pp. 1135-1145
    [17] Menoret, S., De Cian, A., Tesson, L. et al. Homology-directed repair in rodent zygotes using Cas9 and TALEN engineered proteins Sci. Rep., 5 (2015),p. 14410
    [18] Menoret, S., Fontaniere, S., Jantz, D. et al. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases FASEB J., 27 (2013),pp. 703-711
    [19] Otsubo, T., Hida, Y., Ohga, N. et al. Identification of novel targets for antiangiogenic therapy by comparing the gene expressions of tumor and normal endothelial cells Cancer Sci., 105 (2014),pp. 560-567
    [20] Ramakrishna, S., Kwaku Dad, A.B., Beloor, J. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA Genome Res., 24 (2014),pp. 1020-1027
    [21] Ran, F.A., Cong, L., Yan, W.X. et al. Nature, 520 (2015),pp. 186-191
    [22] Ran, F.A., Hsu, P.D., Wright, J. et al. Genome engineering using the CRISPR-Cas9 system Nat. Protoc., 8 (2013),pp. 2281-2308
    [23] Ryu, S.H., Kim, K.H., Kim, H.B. et al. Oncogenic Ras-mediated downregulation of Clast1/LR8 is involved in Ras-mediated neoplastic transformation and tumorigenesis in NIH3T3 cells Cancer Sci., 101 (2010),pp. 1990-1996
    [24] Segovia, M., Louvet, C., Charnet, P. et al. Autologous dendritic cells prolong allograft survival through Tmem176b-dependent antigen cross-presentation Am. J. Transplant., 14 (2014),pp. 1021-1031
    [25] Slaymaker, I.M., Gao, L., Zetsche, B. et al. Rationally engineered Cas9 nucleases with improved specificity Science, 351 (2016),pp. 84-88
    [26] Stemmer, M., Thumberger, T., Del Sol Keyer, M. et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool PLoS One, 10 (2015),p. e0124633
    [27] Tesson, L., Remy, S., Menoret, S. et al. Analysis by quantitative PCR of zygosity in genetically modified organisms Methods Mol. Biol., 597 (2010),pp. 277-285
    [28] Wang, H., Yang, H., Shivalila, C.S. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering Cell, 153 (2013),pp. 910-918
    [29] Wang, L., Shao, Y., Guan, Y. et al. Sci. Rep., 5 (2015),p. 17517
    [30] Xiao, A., Wang, Z., Hu, Y. et al. Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish Nucleic Acids Res., 41 (2013),p. e141
    [31] Yano, M., Kawao, N., Tamura, Y. et al. A novel factor, Tmem176b, induced by activin-like kinase 2 signal promotes the differentiation of myoblasts into osteoblasts Exp. Clin. Endocrinol. Diabetes, 122 (2014),pp. 7-14
    [32] Yen, S.T., Zhang, M., Deng, J.M. et al. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes Dev. Biol., 393 (2014),pp. 3-9
    [33] Zhang, L., Jia, R., Palange, N.J. et al. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9 PLoS One, 10 (2015),p. e0120396
    [34] Zuccolo, J., Bau, J., Childs, S.J. et al. Phylogenetic analysis of the MS4A and TMEM176 gene families PLoS One, 5 (2010),p. e9369
  • 加载中
计量
  • 文章访问数:  163
  • HTML全文浏览量:  55
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-05
  • 录用日期:  2016-04-04
  • 修回日期:  2016-03-26
  • 网络出版日期:  2016-04-22
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回