留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease

Lusi Zhang Jie Deng Qian Pan Yan Zhan Jian-Bing Fan Kun Zhang Zhuohua Zhang

Lusi Zhang, Jie Deng, Qian Pan, Yan Zhan, Jian-Bing Fan, Kun Zhang, Zhuohua Zhang. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease[J]. Journal of Genetics and Genomics, 2016, 43(10): 587-592. doi: 10.1016/j.jgg.2016.05.002
Citation: Lusi Zhang, Jie Deng, Qian Pan, Yan Zhan, Jian-Bing Fan, Kun Zhang, Zhuohua Zhang. Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease[J]. Journal of Genetics and Genomics, 2016, 43(10): 587-592. doi: 10.1016/j.jgg.2016.05.002

doi: 10.1016/j.jgg.2016.05.002

Targeted methylation sequencing reveals dysregulated Wnt signaling in Parkinson disease

More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • [1] Andersson, E., Jensen, J.B., Parmar, M. et al. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2 Development, 133 (2006),pp. 507-516
    [2] Bernheimer, H., Birkmayer, W., Hornykiewicz, O. et al. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations J. Neurol. Sci., 20 (1973),pp. 415-455
    [3] Calvanese, V., Lara, E., Kahn, A. et al. The role of epigenetics in aging and age-related diseases Ageing Res. Rev., 8 (2009),pp. 268-276
    [4] Castelo-Branco, G., Wagner, J., Rodriguez, F.J. et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 12747-12752
    [5] Clevers, H. Wnt/beta-catenin signaling in development and disease Cell, 127 (2006),pp. 469-480
    [6] Deng, J., Shoemaker, R., Xie, B. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming Nat. Biotechnol., 27 (2009),pp. 353-360
    [7] Doi, A., Park, I.H., Wen, B. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts Nat. Genet., 41 (2009),pp. 1350-1353
    [8] Dunnett, S.B., Bjorklund, A. Prospects for new restorative and neuroprotective treatments in Parkinson's disease Nature, 399 (1999),pp. A32-A39
    [9] Faedo, A., Borello, U., Rubenstein, J.L. Repression of fgf signaling by sprouty1-2 regulates cortical patterning in two distinct regions and times J. Neurosci., 30 (2010),pp. 4015-4023
    [10] Goris, A., Williams-Gray, C.H., Foltynie, T. et al. Investigation of TGFβ2 as a candidate gene in multiple sclerosis and Parkinson's disease J. Neurol., 254 (2007),pp. 846-848
    [11] Hatano, T., Kubo, S., Sato, S. et al. Pathogenesis of familial Parkinson's disease: new insights based on monogenic forms of Parkinson's disease J. Neurochem., 111 (2009),pp. 1075-1093
    [12] Hatcher, J.M., Pennell, K.D., Miller, G.W. Parkinson's disease and pesticides: a toxicological perspective Trends Pharmacol. Sci., 29 (2008),pp. 322-329
    [13] Hoglinger, G.U., Rizk, P., Muriel, M.P. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease Nat. Neurosci., 7 (2004),pp. 726-735
    [14] Irizarry, R.A., Ladd-Acosta, C., Wen, B. et al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores Nat. Genet., 41 (2009),pp. 178-186
    [15] Kele, J., Simplicio, N., Ferri, A.L. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons Development, 133 (2006),pp. 495-505
    [16] Kuwabara, T., Hsieh, J., Muotri, A. et al. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis Nat. Neurosci., 12 (2009),pp. 1097-1105
    [17] Le, W.D., Xu, P., Jankovic, J. et al. Nat. Genet., 33 (2003),pp. 85-89
    [18] Lees, A.J., Hardy, J., Revesz, T. Parkinson's disease Lancet, 373 (2009),pp. 2055-2066
    [19] Levecque, C., Elbaz, A., Clavel, J. et al. Association between Parkinson's disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study Hum. Mol. Genet., 12 (2003),pp. 79-86
    [20] Lie, D.C., Colamarino, S.A., Song, H.J. et al. Wnt signalling regulates adult hippocampal neurogenesis Nature, 437 (2005),pp. 1370-1375
    [21] Masliah, E., Dumaop, W., Galasko, D. et al. Distinctive patterns of DNA methylation associated with Parkinson disease: identification of concordant epigenetic changes in brain and peripheral blood leukocytes Epigenetics, 8 (2013),pp. 1030-1038
    [22] McMahon, A.P., Joyner, A.L., Bradley, A. et al. The midbrain-hindbrain phenotype of Wnt-1-/Wnt-1- mice results from stepwise deletion of engrailed-expressing cells by 9.5 days postcoitum Cell, 69 (1992),pp. 581-595
    [23] Moore, K., McKnight, A.J., Craig, D. et al. Epigenome-wide association study for Parkinson's disease Neuromolecular Med., 16 (2014),pp. 845-855
    [24] Nuber, S., Petrasch-Parwez, E., Winner, B. et al. Neurodegeneration and motor dysfunction in a conditional model of Parkinson's disease J. Neurosci., 28 (2008),pp. 2471-2484
    [25] Park, G., Tan, J., Garcia, G. et al. Regulation of histone acetylation by autophagy in Parkinson disease J. Biol. Chem., 291 (2016),pp. 3531-3540
    [26] Prakash, N., Brodski, C., Naserke, T. et al. Development, 133 (2006),pp. 89-98
    [27] Siegenthaler, J.A., Ashique, A.M., Zarbalis, K. et al. Retinoic acid from the meninges regulates cortical neuron generation Cell, 139 (2009),pp. 597-609
    [28] Tan, E.K., Chung, H., Zhao, Y. et al. Genetic analysis of Nurr1 haplotypes in Parkinson's disease Neurosci. Lett., 347 (2003),pp. 139-142
    [29] Thomas, K.R., Capecchi, M.R. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development Nature, 346 (1990),pp. 847-850
    [30] Verstraeten, A., Theuns, J., Van Broeckhoven, C. Progress in unraveling the genetic etiology of Parkinson disease in a genomic era Trends Genet., 31 (2015),pp. 140-149
    [31] Volta, M., Milnerwood, A.J., Farrer, M.J. Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson's disease Lancet Neurol., 14 (2015),pp. 1054-1064
    [32] Winner, B., Lie, D.C., Rockenstein, E. et al. Human wild-type alpha-synuclein impairs neurogenesis J. Neuropathol. Exp. Neurol., 63 (2004),pp. 1155-1166
    [33] Winner, B., Rockenstein, E., Lie, D.C. et al. Mutant alpha-synuclein exacerbates age-related decrease of neurogenesis Neurobiol. Aging, 29 (2008),pp. 913-925
    [34] Zarbalis, K., Siegenthaler, J.A., Choe, Y. et al. Cortical dysplasia and skull defects in mice with a Foxc1 allele reveal the role of meningeal differentiation in regulating cortical development Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 14002-14007
    [35] Zhao, M., Momma, S., Delfani, K. et al. Evidence for neurogenesis in the adult mammalian substantia nigra Proc. Natl. Acad. Sci. U. S. A., 100 (2003),pp. 7925-7930
    [36] Zimprich, A., Grabowski, M., Asmus, F. et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome Nat. Genet., 29 (2001),pp. 66-69
  • 加载中
计量
  • 文章访问数:  142
  • HTML全文浏览量:  54
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-06
  • 录用日期:  2016-05-09
  • 修回日期:  2016-04-05
  • 网络出版日期:  2016-05-13
  • 刊出日期:  2016-10-20

目录

    /

    返回文章
    返回