留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Argonaute: The executor of small RNA function

Azali Azlan Najat Dzaki Ghows Azzam

Azali Azlan, Najat Dzaki, Ghows Azzam. Argonaute: The executor of small RNA function[J]. Journal of Genetics and Genomics, 2016, 43(8): 481-494. doi: 10.1016/j.jgg.2016.06.002
Citation: Azali Azlan, Najat Dzaki, Ghows Azzam. Argonaute: The executor of small RNA function[J]. Journal of Genetics and Genomics, 2016, 43(8): 481-494. doi: 10.1016/j.jgg.2016.06.002

doi: 10.1016/j.jgg.2016.06.002

Argonaute: The executor of small RNA function

More Information
    Corresponding author: E-mail address: ghows@usm.my (Ghows Azzam)
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • [1] Ahlenstiel, C.L., Lim, H.G.W., Cooper, D.A. et al. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells Nucleic Acids Res., 40 (2012),pp. 1579-1595
    [2] Ameyar-Zazoua, M., Rachez, C., Souidi, M. et al. Argonaute proteins couple chromatin silencing to alternative splicing Nat. Struct. Mol. Biol., 19 (2012),pp. 998-1004
    [3] Arribas-Layton, M., Wu, D., Lykke-Andersen, J. et al. Structural and functional control of the eukaryotic mRNA decapping machinery Biochim. Biophys. Acta, 1829 (2013),pp. 580-589
    [4] Avraham, R., Yarden, Y. Regulation of signalling by microRNAs Biochem. Soc. Trans., 40 (2012),pp. 26-30
    [5] Azzam, G., Smibert, P., Lai, E.C. et al. Dev. Biol., 365 (2012),pp. 384-394
    [6] Baek, D., Villén, J., Shin, C. et al. The impact of microRNAs on protein output Nature, 455 (2008),pp. 64-71
    [7] Bagga, S., Bracht, J., Hunter, S. et al. Cell, 122 (2005),pp. 553-563
    [8] Bartel, D.P. MicroRNAs: target recognition and regulatory functions Cell, 136 (2009),pp. 215-233
    [9] Baumberger, N., Baulcombe, D.C. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 11928-11933
    [10] Berezikov, E., Liu, N., Flynt, A.S. et al. Nat. Genet., 42 (2006),pp. 6-10
    [11] Béthune, J., Artus-Revel, C.G., Filipowicz, W. Kinetic analysis reveals successive steps leading to miRNA-mediated silencing in mammalian cells EMBO Rep., 13 (2012),pp. 716-723
    [12] Bohmert, K., Camus, I., Bellini, C. et al. EMBO J., 17 (1998),pp. 170-180
    [13] Bortolamiol-Becet, D., Hu, F., Jee, D. et al. Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase Tailor Mol. Cell, 59 (2015),pp. 217-228
    [14] Braun, J.E., Truffault, V., Boland, A. et al. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation Nat. Struct. Mol. Biol., 19 (2012),pp. 1324-1331
    [15] Brennecke, J., Aravin, A.A., Stark, A. et al. Cell, 128 (2007),pp. 1089-1103
    [16] Buckley, B.A., Burkhart, K.B., Gu, S.G. et al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality Nature, 489 (2012),pp. 447-451
    [17] Carrington, J.C., Ambros, V. Role of microRNAs in plant and animal development Science, 301 (2003),pp. 336-338
    [18] Carthew, R.W., Sontheimer, E.J. Origins and mechanisms of miRNAs and siRNAs Cell, 136 (2009),pp. 642-655
    [19] Cernilogar, F.M., Onorati, M.C., Kothe, G.O. et al. Nature, 480 (2011),pp. 391-395
    [20] Chandradoss, S.D., Schirle, N.T., Szczepaniak, M. et al. A Dynamic search process underlies microRNA targeting Cell, 162 (2015),pp. 96-107
    [21] Chekulaeva, M., Mathys, H., Zipprich, J.T. et al. miRNA repression involves GW182-mediated recruitment of CCR4–NOT through conserved W-containing motifs Nat. Struct. Mol. Biol., 18 (2011),pp. 1218-1226
    [22] Chen, Y., Boland, A., Kuzuoǧlu-Öztürk, D. et al. A DDX6-CNOT1 complex and W-Binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing Mol. Cell, 54 (2014),pp. 737-750
    [23] Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing Nature, 436 (2005),pp. 740-744
    [24] Chung, W.-J., Agius, P., Westholm, J.O. et al. Genome Res., 21 (2011),pp. 286-300
    [25] Czech, B., Zhou, R., Erlich, Y. et al. Mol. Cell, 36 (2009),pp. 445-456
    [26] Deshpande, G., Calhoun, G., Schedl, P. Genes Dev., 19 (2005),pp. 1680-1685
    [27] Diederichs, S., Haber, D.A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression Cell, 131 (2007),pp. 1097-1108
    [28] Djuranovic, S., Nahvi, A., Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay Science, 336 (2012),pp. 237-240
    [29] Drinnenberg, I.A., Weinberg, D.E., Xie, K.T. et al. RNAi in budding yeast Science, 326 (2009),pp. 544-550
    [30] Eichhorn, S.W., Guo, H., McGeary, S.E. et al. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues Mol. Cell, 56 (2014),pp. 104-115
    [31] Eulalio, A., Huntzinger, E., Izaurralde, E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay Nat. Struct. Mol. Biol., 15 (2008),pp. 346-353
    [32] Eulalio, A., Rehwinkel, J., Stricker, M. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing Genes Dev., 21 (2007),pp. 2558-2570
    [33] Fabian, M.R., Mathonnet, G., Sundermeier, T. et al. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation Mol. Cell, 35 (2009),pp. 868-880
    [34] Fabian, M.R., Sonenberg, N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC Nat. Struct. Mol. Biol., 19 (2012),pp. 586-593
    [35] Faehnle, C.R., Elkayam, E., Haase, A.D. et al. The making of a slicer: activation of human Argonaute-1 Cell Rep., 3 (2013),pp. 1901-1909
    [36] Flynt, A.S., Lai, E.C. Biological principles of microRNA-mediated regulation: shared themes amid diversity Nat. Rev. Genet., 9 (2008),pp. 831-842
    [37] Forstemann, K., Horwich, M.D., Wee, L. et al. Cell, 130 (2007),pp. 287-297
    [38] Forstemann, K., Tomari, Y., Du, T. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein PLoS Biol., 3 (2005),p. e236
    [39] Fu, S., Nien, C.-Y., Liang, H.-L. et al. Development, 141 (2014),pp. 2108-2118
    [40] Fukao, A., Mishima, Y., Takizawa, N. et al. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans Mol. Cell, 56 (2014),pp. 79-89
    [41] Fukaya, T., Iwakawa, H.-O., Tomari, Y. Mol. Cell, 56 (2014),pp. 67-78
    [42] Fukaya, T., Tomari, Y. Mol. Cell, 48 (2012),pp. 825-836
    [43] Gagnon, K.T., Li, L., Chu, Y. et al. RNAi factors are present and active in human cell nuclei Cell Rep., 6 (2013),pp. 211-221
    [44] Ghildiyal, M., Xu, J., Seitz, H. et al. RNA, 16 (2010),pp. 43-56
    [45] Gibbings, D., Mostowy, S., Jay, F. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity Nat. Cell Biol., 14 (2012),pp. 1314-1321
    [46] Giraldez, A.J., Mishima, Y., Rihel, J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs Science, 312 (2006),pp. 75-79
    [47] Gregory, R.I., Chendrimada, T.P., Cooch, N. et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing Cell, 123 (2005),pp. 631-640
    [48] Grimaud, C., Bantignies, F., Pal-Bhadra, M. et al. RNAi components are required for nuclear clustering of Polycomb group response elements Cell, 124 (2006),pp. 957-971
    [49] Gu, W., Lee, H.C., Chaves, D. et al. Cell, 151 (2012),pp. 1488-1500
    [50] Guang, S., Bochner, A.F., Burkhart, K.B. et al. Small regulatory RNAs inhibit RNA polymerase II during the elongation phase of transcription Nature, 465 (2010),pp. 1097-1101
    [51] Guang, S., Bochner, A.F., Pavelec, D.M. et al. An Argonaute transports siRNAs from the cytoplasm to the nucleus Science, 321 (2008),pp. 537-541
    [52] Guo, H., Ingolia, N.T., Weissman, J.S. et al. Mammalian microRNAs predominantly act to decrease target mRNA levels Nature, 466 (2010),pp. 835-840
    [53] Hauptmann, J., Dueck, A., Harlander, S. et al. Turning catalytically inactive human Argonaute proteins into active slicer enzymes Nat. Struct. Mol. Biol., 20 (2013),pp. 814-817
    [54] Havecker, E.R., Wallbridge, L.M., Hardcastle, T.J. et al. Plant Cell, 22 (2010),pp. 321-334
    [55] Helwak, A., Kudla, G., Dudnakova, T. et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding Cell, 153 (2013),pp. 654-665
    [56] Hendrickson, D.G., Hogan, D.J., McCullough, H.L. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA PLoS Biol., 7 (2009),p. e1000238
    [57] Herzog, V.A., Ameres, S.L. Approaching the golden fleece a molecule at a time: biophysical insights into Argonaute-instructed nucleic acid interactions Mol. Cell, 59 (2015),pp. 4-7
    [58] Höck, J., Meister, G. The Argonaute protein family Genome Biol., 9 (2008),p. 210
    [59] Horman, S.R., Janas, M.M., Litterst, C. et al. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets Mol. Cell, 50 (2013),pp. 356-367
    [60] Huang, V., Li, L.C. Demystifying the nuclear function of Argonaute proteins RNA Biol., 11 (2014),pp. 18-24
    [61] Humphreys, D.T., Westman, B.J., Martin, D.I.K. et al. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 16961-16966
    [62] Huntzinger, E., Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay Nat. Rev. Genet., 12 (2011),pp. 99-110
    [63] Huntzinger, E., Kuzuoglu-Öztürk, D., Braun, J.E. et al. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets Nucleic Acids Res., 41 (2013),pp. 978-994
    [64] Hutvagner, G., Simard, M.J. Argonaute proteins: key players in RNA silencing Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 22-32
    [65] Iki, T., Yoshikawa, M., Nishikiori, M. et al. Mol. Cell, 39 (2010),pp. 282-291
    [66] Ipsaro, J.J., Joshua-Tor, L. From guide to target: molecular insights into eukaryotic RNA-interference machinery Nat. Struct. Mol. Biol., 22 (2015),pp. 20-28
    [67] Iwasaki, S., Kobayashi, M., Yoda, M. et al. Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes Mol. Cell, 39 (2010),pp. 292-299
    [68] Jackson, R.J., Hellen, C.U.T., Pestova, T.V. The mechanism of eukaryotic translation initiation and principles of its regulation Nat. Rev. Mol. Cell Biol., 11 (2010),pp. 113-127
    [69] Jannot, G., Boisvert, M.-E.L., Banville, I.H. et al. RNA, 14 (2008),pp. 829-835
    [70] Jinek, M., Doudna, J.A. A three-dimensional view of the molecular machinery of RNA interference Nature, 457 (2009),pp. 405-412
    [71] Jinek, M., Fabian, M.R., Coyle, S.M. et al. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation Nat. Struct. Mol. Biol., 17 (2010),pp. 238-240
    [72] Johnston, M., Geoffroy, M.C., Sobala, A. et al. HSP90 protein stabilizes unloaded argonaute complexes and microscopic P-bodies in human cells Mol. Biol. Cell., 21 (2010),pp. 1462-1469
    [73] Johnston, M., Hutvagner, G. Posttranslational modification of Argonautes and their role in small RNA-mediated gene regulation Silence, 2 (2011),p. 5
    [74] Jones, C.I., Grima, D.P., Waldron, J.A. et al. RNA Biol., 10 (2013),pp. 1345-1355
    [75] Kawamata, T., Seitz, H., Tomari, Y. Structural determinants of miRNAs for RISC loading and slicer-independent unwinding Nat. Struct. Mol. Biol., 16 (2009),pp. 953-960
    [76] Kawamata, T., Tomari, Y. Making RISC Trends Biochem. Sci., 35 (2010),pp. 368-376
    [77] Khvorova, A., Reynolds, A., Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias Cell, 115 (2003),pp. 209-216
    [78] Kim, K., Lee, Y.S., Harris, D. et al. Cold Spring Harb. Symp. Quant. Biol., 71 (2006),pp. 39-44
    [79] Kim, V.N., Nam, J.W. Genomics of microRNA Trends Genet., 22 (2006),pp. 165-173
    [80] Kozlov, G., Safaee, N., Rosenauer, A. et al. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein J. Biol. Chem., 285 (2010),pp. 13599-13606
    [81] Krützfeldt, J., Rajewsky, N., Braich, R. et al. Nature, 438 (2005),pp. 685-689
    [82] Kuzuoǧlu-Öztürk, D., Huntzinger, E., Schmidt, S. et al. Nucleic Acids Res., 40 (2012),pp. 5651-5665
    [83] Kwak, P.B., Tomari, Y. The N domain of Argonaute drives duplex unwinding during RISC assembly Nat. Struct. Mol. Biol., 19 (2012),pp. 145-151
    [84] Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation Nat. Genet., 30 (2002),pp. 363-364
    [85] Law, J.A., Jacobsen, S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals Nat. Rev. Genetics, 11 (2010),pp. 204-220
    [86] Lee, R.C., Feinbaum, R.L., Ambros, V. Cell, 75 (1993),pp. 843-854
    [87] Lee, Y.S., Nakahara, K., Pham, J.W. et al. Cell, 117 (2004),pp. 69-81
    [88] Leuschner, P.J.F., Ameres, S.L., Kueng, S. et al. Cleavage of the siRNA passenger strand during RISC assembly in human cells EMBO Rep., 7 (2006),pp. 314-320
    [89] Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W. et al. Prediction of mammalian microRNA targets Cell, 115 (2003),pp. 787-798
    [90] Lin, H., Spradling, A.C. Development, 124 (1997),pp. 2463-2476
    [91] Liu, J., Carmell, M.A., Rivas, F.V. et al. Argonaute2 is the catalytic engine of mammalian RNAi Science, 305 (2004),pp. 1437-1441
    [92] Liu, Q., Rand, T.A., Kalidas, S. et al. Science, 301 (2003),pp. 1921-1925
    [93] Liu, Y., Ye, X., Jiang, F. et al. C3PO, an endoribonuclease that promotes RNAi by facilitating RISC activation Science, 325 (2009),pp. 750-753
    [94] MacRae, I.J., Ma, E., Zhou, M. et al. Proc. Natl. Acad. Sci. U. S. A., 105 (2008),pp. 512-517
    [95] Mallory, A., Vaucheret, H. Form, function, and regulation of ARGONAUTE proteins Plant Cell, 22 (2010),pp. 3879-3889
    [96] Martin, F., Kohler, A., Murat, C. et al. Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis Nature, 464 (2010),pp. 1033-1038
    [97] Martin, R., Smibert, P., Yalcin, A. et al. Mol. Cell. Biol., 29 (2009),pp. 861-870
    [98] Martinez, N.J., Gregory, R.I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance RNA, 19 (2013),pp. 605-612
    [99] Mathys, H., Basquin, J., Ozgur, S. et al. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression Mol. Cell, 54 (2014),pp. 751-765
    [100] Mazumder, A., Bose, M., Chakraborty, A. et al. A transient reversal of miRNA-mediated repression controls macrophage activation EMBO Rep., 14 (2013),pp. 1008-1016
    [101] Meister, G., Landthaler, M., Patkaniowska, A. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs Mol. Cell, 15 (2004),pp. 185-197
    [102] Merchant, S.S., Prochnik, S.E., Vallon, O. et al. The chlamydomonas genome reveals the evolution of key animal and plant functions Science, 318 (2007),pp. 245-250
    [103] Michalik, K.M., Bottcher, R., Forstemann, K. Nucleic Acids Res., 40 (2012),pp. 9596-9603
    [104] Mishima, Y., Fukao, A., Kishimoto, T. et al. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 1104-1109
    [105] Miyoshi, K., Tsukumo, H., Nagami, T. et al. Genes Dev., 19 (2005),pp. 2837-2848
    [106] Morel, J.B., Godon, C., Mourrain, P. et al. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance Plant Cell, 14 (2002),pp. 629-639
    [107] Moshkovich, N., Nisha, P., Boyle, P.J. et al. RNAi-independent role for argonaute2 in CTCF/CP190 chromatin insulator function Genes Dev., 25 (2011),pp. 1686-1701
    [108] Nakahara, K., Kim, K., Sciulli, C. et al. Proc. Natl. Acad. Sci. U. S. A., 102 (2005),pp. 12023-12028
    [109] Nishi, K., Nishi, A., Nagasawa, T. et al. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus RNA, 19 (2013),pp. 17-35
    [110] Nishihara, T., Zekri, L., Braun, J.E. et al. miRISC recruits decapping factors to miRNA targets to enhance their degradation Nucleic Acids Res., 41 (2013),pp. 8692-8705
    [111] Noland, C.L., Ma, E., Doudna, J.A. siRNA repositioning for guide strand selection by human dicer complexes Mol. Cell, 43 (2011),pp. 110-121
    [112] Nonomura, K., Morohoshi, A., Nakano, M. et al. A germ cell specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice Plant Cell, 19 (2007),pp. 2583-2594
    [113] Ohrt, T., Staroske, W., Mütze, J. et al. Fluorescence cross-correlation spectroscopy reveals mechanistic insights into the effect of 2′-O-methyl modified siRNAs in living cells Biophys. J., 100 (2011),pp. 2981-2990
    [114] Okamura, K., Hagen, J.W., Duan, H. et al. Cell, 130 (2007),pp. 89-100
    [115] Okamura, K., Ishizuka, A., Siomi, H. et al. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways Genes Dev., 18 (2004),pp. 1655-1666
    [116] Okamura, K., Lai, E.C. Endogenous small interfering RNAs in animals Nat. Rev. Mol. Cell Biol., 9 (2008),pp. 673-678
    [117] Okamura, K., Liu, N., Lai, E.C. Mol. Cell, 36 (2009),pp. 431-444
    [118] Pare, J.M., Tahbaz, N., López-Orozco, J. et al. Hsp90 regulates the function of Argonaute 2 and its recruitment to stress granules and P-bodies Mol. Biol. Cell, 20 (2009),pp. 3273-3284
    [119] Pfaff, J., Hennig, J., Herzog, F. et al. Structural features of Argonaute-GW182 protein interactions Proc. Natl. Acad. Sci. U. S. A., 110 (2013),pp. E3770-E3779
    [120] Piao, X., Zhang, X., Wu, L. et al. CCR4-NOT deadenylates mRNA associated with RNA-induced silencing complexes in human cells Mol. Cell. Biol., 30 (2010),pp. 1486-1494
    [121] Qi, H.H., Ongusaha, P.P., Myllyharju, J. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability Nature, 455 (2008),pp. 421-424
    [122] Rand, T.A., Petersen, S., Du, F. et al. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation Cell, 123 (2005),pp. 621-629
    [123] Reimão-Pinto, M.M., Ignatova, V., Burkard, T.R. et al. Mol. Cell, 59 (2015),pp. 203-216
    [124] Rhoades, M.W., Reinhart, B.J., Lim, L.P. et al. Prediction of plant microRNA targets Cell, 110 (2002),pp. 513-520
    [125] Rissland, O.S., Lai, E.C. RNA silencing in Monterey Development, 138 (2011),pp. 3093-3102
    [126] Robb, G.B., Rana, T.M. RNA helicase A interacts with RISC in human cells and functions in RISC loading Mol. Cell, 26 (2007),pp. 523-537
    [127] Rouya, C., Siddiqui, N., Morita, M. et al. RNA, 20 (2014),pp. 1398-1409
    [128] Ruby, J.G., Jan, C.H., Bartel, D.P. Intronic microRNA precursors that bypass Drosha processing Nature, 448 (2007),pp. 83-86
    [129] Salomon, W.E., Jolly, S.M., Moore, M.J. et al. Single-molecule imaging reveals that Argonaute reshapes the binding properties of its nucleic acid guides Cell, 162 (2015),pp. 84-95
    [130] Schmid, M., Davison, T.S., Henz, S.R. et al. Nat. Genet., 37 (2005),pp. 501-506
    [131] Scholthof, H.B., Alvarado, V.Y., Vega-Arreguin, J.C. et al. Plant Physiol., 156 (2011),pp. 1548-1555
    [132] Schürmann, N., Trabuco, L.G., Bender, C. et al. Molecular dissection of human Argonaute proteins by DNA shuffling Nat. Struct. Mol. Biol., 20 (2013),pp. 818-826
    [133] Schwarz, D.S., Hutvágner, G., Du, T. et al. Asymmetry in the assembly of the RNAi enzyme complex Cell, 115 (2003),pp. 199-208
    [134] Seitz, H., Tushir, J.S., Zamore, P.D. Silence, 2 (2011),p. 4
    [135] Selbach, M., Selbach, M., Schwanhäusser, B. et al. Widespread changes in protein synthesis induced by microRNAs Nature, 455 (2008),pp. 58-63
    [136] Sempere, L.F., Freemantle, S., Pitha-Rowe, I. et al. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation Genome Biol., 5 (2004)
    [137] Shen, J., Xia, W., Khotskaya, Y.B. et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2 Nature, 497 (2013),pp. 383-387
    [138] Singh, R.K., Gase, K., Baldwin, I.T. et al. Molecular evolution and diversification of the Argonaute family of proteins in plants BMC Plant Biol., 15 (2015),p. 23
    [139] Smibert, P., Yang, J.-S.S., Azzam, G. et al. Homeostatic control of Argonaute stability by microRNA availability Nat. Struct. Mol. Biol., 20 (2013),pp. 789-795
    [140] Song, J.-J.J., Smith, S.K., Hannon, G.J. et al. Crystal structure of Argonaute and its implications for RISC slicer activity Science, 305 (2004),pp. 1434-1437
    [141] Su, H., Meng, S., Lu, Y. et al. Mammalian hyperplastic discs homolog EDD regulates miRNA-mediated gene silencing Mol. Cell, 43 (2011),pp. 97-109
    [142] Subtelny, A.O., Eichhorn, S.W., Chen, G.R. et al. Poly(A)-tail profiling reveals an embryonic switch in translational control Nature, 508 (2014),pp. 66-71
    [143] Taliaferro, J.M., Aspden, J.L., Bradley, T. et al. Genes Dev., 27 (2013),pp. 378-389
    [144] Tan, G.S., Garchow, B.G., Liu, X. et al. Expanded RNA-binding activities of mammalian Argonaute 2 Nucleic Acids Res., 37 (2009),pp. 7533-7545
    [145] Tavsanli, B.C., Ostrin, E.J., Burgess, H.K. et al. Dev. Biol., 272 (2004),pp. 231-247
    [146] Teves, S.S., Henikoff, S. The heat shock response: a case study of chromatin dynamics in gene regulation Biochem. Cell Biol., 91 (2013),pp. 42-48
    [147] Thomsen, S., Azzam, G., Kaschula, R. et al. Developmental RNA processing of 3′UTRs in Hox mRNAs as a context-dependent mechanism modulating visibility to microRNAs Development, 137 (2010),pp. 2951-2960
    [148] Tolia, N.H., Joshua-Tor, L. Slicer and the argonautes Nat. Chem. Biol., 3 (2007),pp. 36-43
    [149] Tomari, Y., Du, T., Zamore, P.D. Cell, 130 (2007),pp. 299-308
    [150] Tomari, Y., Matranga, C., Haley, B. et al. A protein sensor for siRNA asymmetry Science, 306 (2004),pp. 1377-1380
    [151] van Rooij, E., Sutherland, L.B., Qi, X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA Science, 316 (2007),pp. 575-579
    [152] Vaucheret, H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations Genes Dev., 20 (2006),pp. 759-771
    [153] Vaucheret, H. Plant ARGONAUTES Trends Plant Sci., 13 (2008),pp. 350-358
    [154] Vaucheret, H., Vazquez, F., Crété, P. et al. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development Genes Dev., 18 (2004),pp. 1187-1197
    [155] Wakiyama, M., Takimoto, K., Ohara, O. et al. Genes Dev., 21 (2007),pp. 1857-1862
    [156] Wei, W., Ba, Z., Gao, M. et al. A role for small RNAs in DNA double-strand break repair Cell, 149 (2012),pp. 101-112
    [157] Weinmann, L., Hock, J., Ivacevic, T. et al. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs Cell, 136 (2009),pp. 496-507
    [158] Wightman, B., Ha, I., Ruvkun, G. Cell, 75 (1993),pp. 855-862
    [159] Wu, L., Fan, J., Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA Proc. Natl. Acad. Sci. U. S. A., 103 (2006),pp. 4034-4039
    [160] Wu, L., Fan, J., Belasco, J.G. Importance of translation and nonnucleolytic Ago proteins for on-target RNA interference Curr. Biol., 18 (2008),pp. 1327-1332
    [161] Wu, S., Huang, S., Ding, J. et al. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region Oncogene, 29 (2010),pp. 2302-2308
    [162] Yigit, E., Batista, P.J., Bei, Y. et al. Cell, 127 (2006),pp. 747-757
    [163] Yoda, M., Kawamata, T., Paroo, Z. et al. ATP-dependent human RISC assembly pathways Nat. Struct. Mol. Biol., 17 (2010),pp. 17-23
    [164] Zeng, Y., Sankala, H., Zhang, X. et al. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies Biochem. J., 413 (2008),pp. 429-436
    [165] Zhang, H., Xia, R., Meyers, B.C. et al. Evolution, functions, and mysteries of plant ARGONAUTE proteins Curr. Opin. Plant Biol., 27 (2015),pp. 84-90
    [166] Zhang, P., Zhang, H. EMBO Rep., 14 (2013),pp. 568-576
    [167] Zheng, X., Zhu, J., Kapoor, A. et al. EMBO J., 26 (2007),pp. 1691-1701
    [168] Zilberman, D., Cao, X., Jacobsen, S.E. ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation Science, 299 (2003),pp. 716-719
  • 加载中
计量
  • 文章访问数:  111
  • HTML全文浏览量:  37
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-19
  • 录用日期:  2016-06-17
  • 修回日期:  2016-05-08
  • 网络出版日期:  2016-06-30
  • 刊出日期:  2016-08-20

目录

    /

    返回文章
    返回