留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sulfur metabolism and its manipulation in crops

Anna Koprivova Stanislav Kopriva

Anna Koprivova, Stanislav Kopriva. Sulfur metabolism and its manipulation in crops[J]. Journal of Genetics and Genomics, 2016, 43(11): 623-629. doi: 10.1016/j.jgg.2016.07.001
Citation: Anna Koprivova, Stanislav Kopriva. Sulfur metabolism and its manipulation in crops[J]. Journal of Genetics and Genomics, 2016, 43(11): 623-629. doi: 10.1016/j.jgg.2016.07.001

doi: 10.1016/j.jgg.2016.07.001

Sulfur metabolism and its manipulation in crops

More Information
  • [1] Abdin, M.Z., Akmal, M., Ram, M. et al. Constitutive expression of high-affinity sulfate transporter (HAST) gene in Indian mustard showed enhanced sulfur uptake and assimilation Protoplasma, 248 (2011),pp. 591-600
    [2] Atwell, S., Huang, Y.S., Vilhjalmsson, B.J. et al. Nature, 465 (2010),pp. 627-631
    [3] Avraham, T., Badani, H., Galili, S. et al. Plant Biotechnol. J., 3 (2005),pp. 71-79
    [4] Bednarek, P., Pislewska-Bednarek, M., Svatos, A. et al. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense Science, 323 (2009),pp. 101-106
    [5] Bell, J.M. Nutrients and toxicants in rapeseed meal: a review J. Anim. Sci., 58 (1984),pp. 996-1010
    [6] Bloem, E., Haneklaus, S., Schnug, E. Milestones in plant sulfur research on sulfur-induced-resistance (SIR) in Europe Front. Plant Sci., 5 (2014),p. 779
    [7] Bloem, E., Riemenschneider, A., Volker, J. et al. J. Exp. Bot., 55 (2004),pp. 2305-2312
    [8] Borg, K. Physiopathological effects of rapeseed oil: a review Acta Medica Scandinavica, 585S (1975),pp. 5-13
    [9] Brunel-Muguet, S., Mollier, A., Kauffmann, F. et al. Front. Plant Sci., 6 (2015),p. 993
    [10] Calderwood, A., Morris, R.J., Kopriva, S. Predictive sulfur metabolism - a field in flux Front. Plant Sci., 5 (2014),p. 646
    [11] Chan, E.K., Rowe, H.C., Corwin, J.A. et al. PLoS Biol., 9 (2011),p. e1001125
    [12] Chiba, Y., Ishikawa, M., Kijima, F. et al. Science, 286 (1999),pp. 1371-1374
    [13] Choe, Y.H., Kim, Y.S., Kim, I.S. et al. Homologous expression of gamma-glutamylcysteine synthetase increases grain yield and tolerance of transgenic rice plants to environmental stresses J. Plant Physiol., 170 (2013),pp. 610-618
    [14] Clarke, D.B. Glucosinolates, structures and analysis in food Anal. Methods, 2 (2010),pp. 310-325
    [15] Clarke, J.D., Dashwood, R.H., Ho, E. Multi-targeted prevention of cancer by sulforaphane Cancer Lett., 269 (2008),pp. 291-304
    [16] Cornelis, M.C., El-Sohemy, A., Campos, H. Am. J. Clin. Nutr., 86 (2007),pp. 752-758
    [17] Dubousset, L., Etienne, P., Avice, J.C. Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages? J. Exp. Bot., 61 (2010),pp. 4313-4324
    [18] El Nockrashy, A.S., Kiewitt, M., Mangold, H.K. et al. Nutritive value of rapeseed meals and rapeseed protein isolates Nutr. Metab., 19 (1975),pp. 145-152
    [19] Elmore, J.S., Mottram, D.S., Muttucumaru, N. et al. Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation J. Agric. Food Chem., 55 (2007),pp. 5363-5366
    [20] Fahey, J.W., Zalcmann, A.T., Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants Phytochemistry, 56 (2001),pp. 5-51
    [21] Faulkner, K., Mithen, R., Williamson, G. Selective increase of the potential anticarcinogen 4-methylsulphinylbutyl glucosinolate in broccoli Carcinogenesis, 19 (1998),pp. 605-609
    [22] Foyer, C.H., Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism Planta, 133 (1976),pp. 21-25
    [23] Frerigmann, H., Berger, B., Gigolashvili, T. Plant Physiol., 166 (2014),pp. 349-369
    [24] Frerigmann, H., Gigolashvili, T. Mol. Plant, 7 (2014),pp. 814-828
    [25] Furuya, A.K., Sharifi, H.J., Jellinger, R.M. et al. Sulforaphane inhibits HIV infection of macrophages through Nrf2 PLoS Pathog., 12 (2016),p. e1005581
    [26] Gerwick, B.C., Ku, S.B., Black, C.C. Initiation of sulfate activation: a variation in c4 photosynthesis plants Science, 209 (1980),pp. 513-515
    [27] Geu-Flores, F., Moldrup, M.E., Bottcher, C. et al. Plant Cell, 23 (2011),pp. 2456-2469
    [28] Gigolashvili, T., Berger, B., Mock, H.P. et al. Plant J., 50 (2007),pp. 886-901
    [29] Gigolashvili, T., Yatusevich, R., Berger, B. et al. Plant J., 51 (2007),pp. 247-261
    [30] Glazebrook, J., Ausubel, F.M. Proc. Natl. Acad. Sci. U. S. A., 91 (1994),pp. 8955-8959
    [31] Graham, S. Results of case-control studies of diet and cancer in Buffalo, New York Cancer Res., 43 (1983),pp. 2409s-2413s
    [32] Hagan, N.D., Upadhyaya, N., Tabe, L.M. et al. The redistribution of protein sulfur in transgenic rice expressing a gene for a foreign, sulfur-rich protein Plant J., 34 (2003),pp. 1-11
    [33] Halford, N.G., Curtis, T.Y., Muttucumaru, N. et al. The acrylamide problem: a plant and agronomic science issue J. Exp. Bot., 63 (2012),pp. 2841-2851
    [34] Halkier, B.A., Gershenzon, J. Biology and biochemistry of glucosinolates Ann. Rev. Plant Biol., 57 (2006),pp. 303-333
    [35] Harper, A.L., Trick, M., Higgins, J. et al. Nat. Biotechnol., 30 (2012),pp. 798-802
    [36] Hawkesford, M.J. Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency J. Exp. Bot., 51 (2000),pp. 131-138
    [37] Hesse, H., Kreft, O., Maimann, S. et al. Current understanding of the regulation of methionine biosynthesis in plants J. Exp. Bot., 55 (2004),pp. 1799-1808
    [38] Hirai, M.Y., Klein, M., Fujikawa, Y. et al. J. Biol. Chem., 280 (2005),pp. 25590-25595
    [39] Hirai, M.Y., Sugiyama, K., Sawada, Y. et al. Proc. Natl. Acad. Sci. U. S. A., 104 (2007),pp. 6478-6483
    [40] Holst, B., Williamson, G. A critical review of the bioavailability of glucosinolates and related compounds Nat. Prod. Rep., 21 (2004),pp. 425-447
    [41] Jamieson, P.D., Semenov, M.A., Brooking, I.R. et al. Sirius: a mechanistic model of wheat response to environmental variation Eur. J. Agron., 8 (1998),pp. 161-179
    [42] Jost, R., Altschmied, L., Bloem, E. et al. Photosynth. Res., 86 (2005),pp. 491-508
    [43] Juge, N., Mithen, R.F., Traka, M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review Cell. Mol. Life Sci., 64 (2007),pp. 1105-1127
    [44] Kataoka, T., Watanabe-Takahashi, A., Hayashi, N. et al. Plant Cell, 16 (2004),pp. 2693-2704
    [45] Kertesz, M.A., Mirleau, P. The role of soil microbes in plant sulphur nutrition J. Exp. Bot., 55 (2004),pp. 1939-1945
    [46] Kliebenstein, D., Pedersen, D., Barker, B. et al. Genetics, 161 (2002),pp. 325-332
    [47] Kliebenstein, D.J., Kroymann, J., Brown, P. et al. Plant Physiol., 126 (2001),pp. 811-825
    [48] Kocsy, G., von Ballmoos, P., Ruegsegger, A. et al. Increasing the glutathione content in a chilling-sensitive maize genotype using safeners increased protection against chilling-induced injury Plant Physiol., 127 (2001),pp. 1147-1156
    [49] Kopriva, S., Calderwood, A., Weckopp, S.C. et al. Plant sulfur and big data Plant Sci., 241 (2015),pp. 1-10
    [50] Kopriva, S., Mugford, S.G., Baraniecka, P. et al. Front. Plant Sci., 3 (2012),p. 163
    [51] Kopriva, S., Mugford, S.G., Matthewman, C. et al. Plant sulfate assimilation genes: redundancy versus specialization Plant Cell Rep., 28 (2009),pp. 1769-1780
    [52] Koprivova, A., Harper, A.L., Trick, M. et al. Plant Physiol., 166 (2014),pp. 442-450
    [53] Koprivova, A., Kopriva, S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road Front. Plant Sci., 5 (2014),p. 589
    [54] Koralewska, A., Posthumus, F.S., Stuiver, C.E. et al. Plant Biol. (Stuttg), 9 (2007),pp. 654-661
    [55] Kreft, O., Hoefgen, R., Hesse, H. Functional analysis of cystathionine gamma-synthase in genetically engineered potato plants Plant Physiol., 131 (2003),pp. 1843-1854
    [56] Lavecchia, T., Rea, G., Antonacci, A. et al. Healthy and adverse effects of plant-derived functional metabolites: the need of revealing their content and bioactivity in a complex food matrix Crit. Rev. Food Sci. Nutr., 53 (2013),pp. 198-213
    [57] Lea, P.J., Sodek, L., Parry, M.A. et al. Asparagine in plants Ann. Appl. Biol., 150 (2007),pp. 1-26
    [58] Lindblom, S.D., Abdel-Ghany, S., Hanson, B.R. et al. Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation J. Environ. Qual., 35 (1996),pp. 726-733
    [59] Loudet, O., Saliba-Colombani, V., Camilleri, C. et al. Nat. Genet., 39 (2007),pp. 896-900
    [60] Malitsky, S., Blum, E., Less, H. et al. Plant Physiol., 148 (2008),pp. 2021-2049
    [61] Martin, M.N., Tarczynski, M.C., Shen, B. et al. The role of 5′-adenylylsulfate reductase in controlling sulfate reduction in plants Photosynth. Res., 86 (2005),pp. 309-323
    [62] Matsui, T., Nakamura, N., Ojima, A. et al. Sulforaphane reduces advanced glycation end products (AGEs)-induced inflammation in endothelial cells and rat aorta Nutr. Metab. Cardiovasc. Dis., 26 (2016),pp. 797-807
    [63] McGrath, S.P., Zhao, F.J. J. Agric. Sci., 126 (1996),pp. 53-62
    [64] Mikkelsen, M.D., Petersen, B.L., Glawischnig, E. et al. Plant Physiol., 131 (2003),pp. 298-308
    [65] Mithen, R., Faulkner, K., Magrath, R. et al. Development of isothiocyanate-enriched broccoli, and its enhanced ability to induce phase 2 detoxification enzymes in mammalian cells Theor. Appl. Genet., 106 (2003),pp. 727-734
    [66] Moldrup, M.E., Geu-Flores, F., de Vos, M. et al. Plant Biotechnol. J., 10 (2012),pp. 435-442
    [67] Molvig, L., Tabe, L.M., Eggum, B.O. et al. Proc. Natl. Acad. Sci. U. S. A., 94 (1997),pp. 8393-8398
    [68] Moss, H.J., Randall, P.J., Wrigley, C.W. Alteration to grain, flour and dough quality in three wheat types with variation in soil sulfur supply J. Cereal Sci., 1 (1983),pp. 255-264
    [69] Mottram, D.S., Wedzicha, B.L., Dodson, A.T. Acrylamide is formed in the Maillard reaction Nature, 419 (2002),pp. 448-449
    [70] Muntz, K., Christov, V., Saalbach, G. et al. Genetic engineering for high methionine grain legumes Nahrung, 42 (1998),pp. 125-127
    [71] Muttucumaru, N., Halford, N.G., Elmore, J.S. et al. Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat J. Agric. Food Chem., 54 (2006),pp. 8951-8955
    [72] Nesi, N., Delourme, R., Bregeon, M. et al. C. R. Biol., 331 (2008),pp. 763-771
    [73] Panthee, D.R., Pantalone, V.R., Sams, C.E. et al. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds Theor. Appl. Genet., 112 (2006),pp. 546-553
    [74] Parisy, V., Poinssot, B., Owsianowski, L. et al. Plant J., 49 (2007),pp. 159-172
    [75] Pastorello, E.A., Pompei, C., Pravettoni, V. et al. Lipid transfer proteins and 2S albumins as allergens Allergy, 56 (2001),pp. 45-47
    [76] Pilon-Smits, E.A., Hwang, S., Mel Lytle, C. et al. Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance Plant Physiol., 119 (1999),pp. 123-132
    [77] Porter, J.R., Leight, R.A., Semenov, M.A. et al. Modelling the effects of climatic change and genetics modification on nitrogen use by wheat Eur. J. Agron., 4 (1995),pp. 419-429
    [78] Ratzka, A., Vogel, H., Kliebenstein, D.J. et al. Disarming the mustard oil bomb Proc. Natl. Acad. Sci. U. S. A., 99 (2002),pp. 11223-11228
    [79] Rausch, T., Wachter, A. Sulfur metabolism: a versatile platform for launching defence operations Trends Plant Sci., 10 (2005),pp. 503-509
    [80] Rose, P., Whiteman, M., Moore, P.K. et al. Nat. Prod. Rep., 22 (2005),pp. 351-368
    [81] Sauter, M., Moffatt, B., Saechao, M.C. et al. Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis Biochem. J., 451 (2013),pp. 145-154
    [82] Schweizer, F., Fernandez-Calvo, P., Zander, M. et al. Plant Cell, 25 (2013),pp. 3117-3132
    [83] Sieh, D., Watanabe, M., Devers, E.A. et al. New Phytol., 197 (2013),pp. 606-616
    [84] Singh, K., Zimmerman, A.W. Sulforaphane treatment of young men with autism spectrum disorder CNS Neurol. Disord. Drug Targets, 15 (2016),pp. 597-601
    [85] Sonderby, I.E., Burow, M., Rowe, H.C. et al. Plant Physiol., 153 (2010),pp. 348-363
    [86] Sonderby, I.E., Geu-Flores, F., Halkier, B.A. Biosynthesis of glucosinolates–gene discovery and beyond Trends Plant Sci., 15 (2010),pp. 283-290
    [87] Sonderby, I.E., Hansen, B.G., Bjarnholt, N. et al. A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates PLoS One, 2 (2007),p. e1322
    [88] Song, S., Hou, W., Godo, I. et al. Soybean seeds expressing feedback-insensitive cystathionine gamma-synthase exhibit a higher content of methionine J. Exp. Bot., 64 (2013),pp. 1917-1926
    [89] Stadler, R.H., Blank, I., Varga, N. et al. Acrylamide from Maillard reaction products Nature, 419 (2002),pp. 449-450
    [90] Tabe, L., Wirtz, M., Molvig, L. et al. Overexpression of serine acetlytransferase produced large increases in O-acetylserine and free cysteine in developing seeds of a grain legume J. Exp. Bot., 61 (2010),pp. 721-733
    [91] Takahashi, H., Kopriva, S., Giordano, M. et al. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes Annu. Rev. Plant Biol., 62 (2011),pp. 157-184
    [92] Toroser, D., Thormann, C.E., Osborn, T.C. et al. Theor. Appl. Genet., 91 (1995),pp. 802-808
    [93] Traka, M., Gasper, A.V., Melchini, A. et al. Broccoli consumption interacts with GSTM1 to perturb oncogenic signalling pathways in the prostate PLoS One, 3 (2008),p. e2568
    [94] Traka, M., Mithen, R. Glucosinolates, isothiocyanates and human health Phytochem. Rev., 8 (2009),pp. 269-282
    [95] Traka, M.H., Mithen, R.F. Plant science and human nutrition: challenges in assessing health-promoting properties of phytochemicals Plant Cell, 23 (2011),pp. 2483-2497
    [96] Traka, M.H., Saha, S., Huseby, S. et al. Genetic regulation of glucoraphanin accumulation in Beneforte broccoli New Phytol., 198 (2013),pp. 1085-1095
    [97] Tsakraklides, G., Martin, M., Chalam, R. et al. Plant J., 32 (2002),pp. 879-889
    [98] Underhill, E.W., Chisholm, M.D., Wetter, L.R. Biosynthesis of mustard oil glucosides. I. Administration of C14-labelled compounds to horseradish, nasturtium, and watercress Can. J. Biochem. Physiol., 40 (1962),pp. 1505-1514
    [99] Vauclare, P., Kopriva, S., Fell, D. et al. Plant J., 31 (2002),pp. 729-740
    [100] Wangeline, A.L., Burkhead, J.L., Hale, K.L. et al. Overexpression of ATP sulfurylase in Indian mustard: effects on tolerance and accumulation of twelve metals J. Environ. Qual., 33 (2004),pp. 54-60
    [101] Weckopp, S.C., Kopriva, S. Are changes in sulfate assimilation pathway needed for evolution of C4 photosynthesis? Front. Plant Sci., 5 (2014),p. 773
    [102] Weigel, D. Plant Physiol., 158 (2012),pp. 2-22
    [103] Williams, J.S., Hall, S.A., Hawkesford, M.J. et al. Elemental sulfur and thiol accumulation in tomato and defense against a fungal vascular pathogen Plant Physiol., 128 (2002),pp. 150-159
    [104] Wrigley, C.W., Du Cros, D.L., Fullington, J.G. et al. Changes in polypeptide composition and grain quality due to sulfur deficiency in wheat J. Cereal Sci., 2 (1984),pp. 15-24
    [105] Wu, Y., Wang, W., Messing, J. Balancing of sulfur storage in maize seed BMC Plant Biol., 12 (2012),p. 77
    [106] Yatusevich, R., Mugford, S.G., Matthewman, C. et al. Plant J., 62 (2010),pp. 1-11
    [107] Ye, H., Zhang, X.Q., Broughton, S. et al. A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley Funct. Integr. Genom., 11 (2011),pp. 103-110
    [108] Zhang, Y., Talalay, P., Cho, C.G. et al. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure Proc. Natl. Acad. Sci. U. S. A., 89 (1992),pp. 2399-2403
    [109] Zhao, H., Frank, T., Tan, Y. et al. Disruption of OsSULTR3;3 reduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains New Phytol., 211 (2016),pp. 926-939
    [110] Zorb, C., Steinfurth, D., Seling, S. et al. Quantitative protein composition and baking quality of winter wheat as affected by late sulfur fertilization J. Agric. Food Chem., 57 (2009),pp. 3877-3885
  • 加载中
计量
  • 文章访问数:  80
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-07
  • 录用日期:  2016-07-12
  • 网络出版日期:  2016-08-05
  • 刊出日期:  2016-11-20

目录

    /

    返回文章
    返回