OspTAC2 encodes a pentatricopeptide repeat protein and regulates rice chloroplast development
-
Abstract: Functional chloroplast generation depends on the precise coordination of gene expression between the plastid and the nucleus and is essential for plant growth and development. In this study, a rice (Oryza sativa) mutant that exhibited albino and seedling-lethal phenotypes was isolated from a60Co-irradiated rice population. The mutant gene was identified as an ortholog of the Arabidopsis plastid transcriptionally active chromosome protein 2 (pTAC2) gene, and the mutant strain was designated osptac2. Sequence and transcription analyses showed that OspTAC2 encodes a putative chloroplast protein consisting of 10 pentratricopeptide repeat (PPR) domains and a C-terminal small MutS-related (SMR) domain. Cytological observations via microscopy showed that the OspTAC2-green fluorescent fusion protein is localized in the chloroplasts. Transmission electron microscopy revealed that the chloroplast of the osptac2 mutant lacks an organized thylakoid membrane. The transcript levels of all investigated PEP (plastid-encoded RNA polymerase)-dependent genes were dramatically reduced in the osptac2 mutant, whereas the transcript levels of NEP (nuclear-encoded polymerase)-dependent genes were increased. These results suggest that OspTAC2 plays a critical role in chloroplast development and indicate that the molecular function of the OspTAC2 gene is conserved in rice and Arabidopsis.
-
Key words:
- Pentatricopeptide repeat protein /
- Chloroplast development
-
[1] Akagi, H., Nakamura, A., Yokozeki-Misono, Y. et al. Theor. Appl. Genet., 108 (2004),pp. 1449-1457 [2] Aubourg, S., Boudet, N., Kreis, M. et al. Plant Mol. Biol., 42 (2000),pp. 603-613 [3] Barkan, A., Small, I. Pentatricopeptide repeat proteins in plants Annu. Rev. Plant Biol., 65 (2014),pp. 415-442 [4] Courtois, F., Merendino, L., Demarsy, E. et al. Plant Physiol., 145 (2007),pp. 712-721 [5] Chen, M., Galvão, R.M., Li, M. et al. Cell, 141 (2010),pp. 1230-1240 [6] Ding, Y., Liu, N., Tang, Z. et al. Plant Cell, 18 (2006),pp. 815-830 [7] Emanuelsson, O., Nielsen, H., Brunak, S. et al. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence J. Mol. Biol., 300 (2000),pp. 1005-1016 [8] Emanuelsson, O., Nielsen, H., von Heijne, G. ChloroP, a neural networkbased method for predicting chloroplast transit peptides and their cleavage sites Protein Sci., 8 (1999),pp. 978-984 [9] Gao, Z., Yu, Q., Zhao, T. et al. Plant Physiol., 157 (2011),pp. 1733-1745 [10] Gong, X., Su, Q., Lin, D. et al. J. Integr. Plant Biol., 56 (2014),pp. 400-410 [11] Gothandam, K., Kim, E., Cho, H. et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis Plant Mol. Biol., 58 (2005),pp. 421-433 [12] Gutierrez-Nava, M., Gillmor, C., Jimenez, L. et al. Plant Physiol., 135 (2004),pp. 471-482 [13] Hiei, Y., Ohta, S., Komari, T. et al. Plant J., 6 (1994),pp. 271-282 [14] Hricova, A., Quesada, V., Micol, J. Plant Physiol., 141 (2006),pp. 942-956 [15] Jefferson, R. The GUS reporter gene system Nature, 342 (1989),pp. 837-838 [16] Jeon, Y., Jung, H.J., Kang, H. et al. New Phytol., 193 (2012),pp. 349-363 [17] Kim, S., Yang, J., Moon, S. et al. Plant J., 59 (2009),pp. 738-749 [18] Koussevitzky, S., Nott, A., Mockler, T. et al. Signals from chloroplasts converge to regulate nuclear gene expression Science, 316 (2007),pp. 715-719 [19] Kwon, K., Cho, M. Plant J., 55 (2008),pp. 428-442 [20] Li, X., Zhang, Y., Hou, M. et al. Plant J., 79 (2014),pp. 797-809 [21] Liu, S., Melonek, J., Boykin, L. et al. PPR-SMRs: ancient proteins with enigmatic functions RNA Biol., 10 (2013),pp. 1501-1510 [22] Lurin, C., Andrés, C., Aubourg, S. et al. Plant Cell, 16 (2004),pp. 2089-2103 [23] Mandel, M., Feldmann, K., Herrera-Estrella, L. et al. Plant J., 9 (1996),pp. 649-658 [24] Marechal, A., Parent, J.S., Véronneau-Lafortune, F. et al. Proc. Natl. Acad. Sci. U. S. A., 106 (2009),pp. 14693-14698 [25] McCouch, S., Teytelman, L., Xu, Y. et al. DNA Res., 9 (2002),pp. 199-207 [26] Meinke, D., Muralla, R., Sweeney, C. et al. Trends Plant Sci., 13 (2008),pp. 483-491 [27] Motohashi, R., Nagata, N., Ito, T. et al. Proc. Natl. Acad. Sci. U. S. A., 98 (2001),pp. 10499-10504 [28] O'Toole, N., Hattori, M., Andres, C. et al. On the expansion of the pentatricopeptide repeat gene family in plants Mol. Biol. Evol., 25 (2008),pp. 1120-1128 [29] Pfalz, J., Liere, K., Kandlbinder, A. et al. pTAC2, -6, and -12 are components of the transcriptionally active plastid chromosome that are required for plastid gene expression Plant Cell, 18 (2006),pp. 176-197 [30] Pyke, K. Plastid biogenesis and differentiation Curr. Genet., 19 (2007),pp. 1-28 [31] Small, I., Peeters, N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins Trends biochem. Sci., 25 (2000),pp. 46-47 [32] Steiner, S., Schröter, Y., Pfalz, J. et al. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development Plant Physiol., 157 (2011),pp. 1043-1055 [33] Su, N., Hu, M., Wu, D. et al. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production Plant Physiol., 159 (2012),pp. 227-238 [34] Swiatecka-Hagenbruch, M., Emanuel, C., Hedtke, B. et al. Impaired function of the phage-type RNA polymerase RpoTp in transcription of chloroplast genes is compensated by a second phage-type RNA polymerase Nucleic Acids Res., 36 (2008),pp. 785-792 [35] Tan, J., Tan, Z., Wu, F. et al. A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice Mol. Plant, 7 (2014),pp. 1329-1349 [36] Tang, H., Luo, D., Zhou, D. et al. Mol. Plant, 7 (2014),pp. 1497-1500 [37] Toda, T., Fujii, S., Noguchi, K. et al. Plant J., 72 (2012),pp. 450-460 [38] Wang, Z., Zou, Y., Li, X. et al. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing Plant Cell, 18 (2006),pp. 676-687 [39] Waters, M., Langdale, J. The making of a chloroplast EMBO J., 28 (2009),pp. 2861-2873 [40] Yagi, Y., Ishizaki, Y., Nakahira, Y. et al. Eukaryotic-type plastid nucleoid protein pTAC3 is essential for transcription by the bacterial-type plastid RNA polymerase Proc. Natl. Acad. Sci. U. S. A., 109 (2012),pp. 7541-7546 [41] Yu, Q., Lu, Y., Ma, Q. et al. Physiol. Plant, 148 (2013),pp. 408-421 [42] Zoschke, R., Qu, Y., Zubo, Y. et al. J. Plant Res., 126 (2013),pp. 403-414 期刊类型引用(31)
1. Xu, M., Zhang, X., Cao, J. et al. OsPGL3A encodes a DYW-type pentatricopeptide repeat protein involved in chloroplast RNA processing and regulated chloroplast development. Molecular Breeding, 2024, 44(4): 29. 必应学术
2. Wu, X.-X., Mu, W.-H., Li, F. et al. Cryo-EM structures of the plant plastid-encoded RNA polymerase. Cell, 2024, 187(5): 1127-1144.e21. 必应学术
3. Meng, L., Du, M., Zhu, T. et al. PPR proteins in plants: roles, mechanisms, and prospects for rice research. Frontiers in Plant Science, 2024. 必应学术
4. Lan, J., Lin, Q., Zhou, C. et al. Young Leaf White Stripe encodes a P-type PPR protein required for chloroplast development. Journal of Integrative Plant Biology, 2023, 65(7): 1687-1702. 必应学术
5. Andrade-Marcial, M., Pacheco-Arjona, R., Góngora-Castillo, E. et al. Chloroplastic pentatricopeptide repeat proteins (PPR) in albino plantlets of Agave angustifolia Haw. reveal unexpected behavior. BMC Plant Biology, 2022, 22(1): 352. 必应学术
6. Sugita, M.. An Overview of Pentatricopeptide Repeat (PPR) Proteins in the Moss Physcomitrium patens and Their Role in Organellar Gene Expression. Plants, 2022, 11(17): 2279. 必应学术
7. Zheng, S., Dong, J., Lu, J. et al. A cytosolic pentatricopeptide repeat protein is essential for tapetal plastid development by regulating OsGLK1 transcript levels in rice. New Phytologist, 2022, 234(5): 1678-1695. 必应学术
8. Li, X., Luo, W., Zhou, W. et al. CAF proteins help SOT1 regulate the stability of chloroplast ndhA transcripts. International Journal of Molecular Sciences, 2021, 22(23): 12639. 必应学术
9. Takahashi, A., Sugita, C., Ichinose, M. et al. Moss PPR-SMR protein PpPPR_64 influences the expression of a psaA-psaB-rps14 gene cluster and processing of the 23S–4.5S rRNA precursor in chloroplasts. Plant Molecular Biology, 2021, 107(4-5): 417-429. 必应学术
10. Vasumathy, S.K., Alagu, M. SSR marker-based genetic diversity analysis and SNP haplotyping of genes associating abiotic and biotic stress tolerance, rice growth and development and yield across 93 rice landraces. Molecular Biology Reports, 2021, 48(8): 5943-5953. 必应学术
11. Miglani, G.S., Kaur, M., Manchanda, P. Pentatricopeptide repeat proteins: I. Involvement in RNA editing in plants. Journal of Crop Improvement, 2021, 35(5): 605-653. 必应学术
12. Breman, F.C., Snijder, R.C., Korver, J.W. et al. Interspecific Hybrids Between Pelargonium × hortorum and Species From P. Section Ciconium Reveal Biparental Plastid Inheritance and Multi-Locus Cyto-Nuclear Incompatibility. Frontiers in Plant Science, 2020. 必应学术
13. Zhang, J., Guo, Y., Fang, Q. et al. The PPR-SMR protein ATP4 is required for editing the chloroplast rps8 mRNA in rice and maize. Plant Physiology, 2020, 184(4): 2011-2021. 必应学术
14. Lv, J., Shang, L., Chen, Y. et al. OsSLC1 Encodes a Pentatricopeptide Repeat Protein Essential for Early Chloroplast Development and Seedling Survival. Rice, 2020, 13(1): 25. 必应学术
15. Shen, L., Zhang, Q., Wang, Z. et al. OsCAF2 contains two CRM domains and is necessary for chloroplast development in rice. BMC Plant Biology, 2020, 20(1): 381. 必应学术
16. Lv, X., Zhang, Y., Zhang, Y. et al. Source-sink modifications affect leaf senescence and grain mass in wheat as revealed by proteomic analysis. BMC Plant Biology, 2020, 20(1): 257. 必应学术
17. Zhang, W., Meng, S., Wang, Q. et al. Transcriptome analysis of maize pTAC2 effects on chlorophyll synthesis in seedling leaves. Scientia Agricultura Sinica, 2020, 53(5): 874-889. 必应学术
18. Fang, Y., Hou, L., Zhang, X. et al. Disruption of ζ-Carotene Desaturase Protein ALE1 Leads to Chloroplast Developmental Defects and Seedling Lethality. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11607-11615. 必应学术
19. Hao, Y., Wang, Y., Wu, M. et al. The nuclear-localized PPR protein OsNPPR1 is important for mitochondrial function and endosperm development in rice. Journal of Experimental Botany, 2019, 70(18): 4705-4719. 必应学术
20. Zhang, Y., Lu, C. The Enigmatic Roles of PPR-SMR Proteins in Plants. Advanced Science, 2019, 6(13): 1900361. 必应学术
21. Hoang, G.T., Gantet, P., Nguyen, K.H. et al. Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel. PLoS ONE, 2019, 14(7): e0219274. 必应学术
22. Akhter, D., Qin, R., Nath, U.K. et al. Transcriptional profile corroborates that bml mutant plays likely role in premature leaf senescence of rice (Oryza sativa L.). International Journal of Molecular Sciences, 2019, 20(7): 1708. 必应学术
23. Chen, L., Huang, L., Dai, L. et al. PALE-GREEN LEAF12 Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. Plant and Cell Physiology, 2019, 60(3): 587-598. 必应学术
24. Yoo, Y.-H., Hong, W.-J., Jung, K.-H. A systematic view exploring the role of chloroplasts in plant abiotic stress responses. BioMed Research International, 2019. 必应学术
25. Asad, M.A.U., Zakari, S.A., Zhao, Q. et al. Abiotic stresses intervene with aba signaling to induce destructive metabolic pathways leading to death: Premature leaf senescence in plants. International Journal of Molecular Sciences, 2019, 20(2): 256. 必应学术
26. Liu, X., Lan, J., Huang, Y. et al. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress. Journal of Experimental Botany, 2018, 69(16): 3949-3961. 必应学术
27. Zhang, Q., Xia, C., Zhang, L. et al. Transcriptome analysis of a premature leaf senescence mutant of common wheat (Triticum aestivum L.). International Journal of Molecular Sciences, 2018, 19(3): 782. 必应学术
28. Wang, Z.-W., Lv, J., Xie, S.-Z. et al. OsSLA4 encodes a pentatricopeptide repeat protein essential for early chloroplast development and seedling growth in rice. Plant Growth Regulation, 2018, 84(2): 249-260. 必应学术
29. He, L., Zhang, S., Qiu, Z. et al. FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. Journal of Integrative Plant Biology, 2018, 60(2): 94-111. 必应学术
30. Qiu, Z., Kang, S., He, L. et al. The newly identified heat-stress sensitive albino 1 gene affects chloroplast development in rice. Plant Science, 2018. 必应学术
31. Wang, Y., Ren, Y., Zhou, K. et al. WHITE STRIPE LEAF4 encodes a novel P-type PPR protein required for chloroplast biogenesis during early leaf development. Frontiers in Plant Science, 2017. 必应学术
其他类型引用(6)
-

计量
- 文章访问数: 126
- HTML全文浏览量: 43
- PDF下载量: 5
- 被引次数: 37